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Abstract

Preliminary Investigation of Models of Coupled Clocks and Coupled Driven

Pendulums

by

Christopher A. LeBailly

In this paper we study a phenomena observed in the 17th century by Christiaan Huygens. He

found that two pendulum clocks placed on a common support synchronized over time. We study

a model of this type of coupling primarily using the fourth-order Runge-Kutta method. We look

at time series to get a picture of what types of synchronization occur and then once we figure

out how to classify synchronization we study how varying the damping in the system a↵ects

the synchronization. We next look at what happens when driven pendulums replace the clocks.

We compare phase portraits and bifurcation diagrams of the uncoupled driven pendulum to the

coupled driven pendulums to get a picture of how the dynamics and chaotic tendencies of the

driven pendulum change with the coupling.
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Chapter 1

Introduction

The Dutch mathematician and physicist Christiaan Huygens, who is credited with

inventing the pendulum clock in 1656, made the startling observation that two pendulum clocks

on a common support would synchronize over time. He described this phenomena in a letter he

wrote to his father in 1665, which is partially quoted below ([3], pgs. 153-154)

While I was forced to stay in bed for a few days and made observations on my two
clocks of the new workshop, I noticed a wonderful e↵ect that nobody could have
thought of before. The two clocks, while hanging [on the wall] side by side with
a distance of one or two feet between, kept in pace relative to each other with a
precision so high that the two pendulums always swung together, and never varied.
While I admired this for some time, I finally found that this happened due to a
sort of sympathy: when I made the pendulums swing at di↵ering paces, I found
that half an hour later, they always returned to synchronism and kept it constantly
afterwards, as long as I let them go.

As a high school student I was interested in computer modeling. My physics teacher

told me about Huygens’ discovery and thought it would be interesting to try to model this phe-

nomena. I was also curious what would happen if the clocks were replaced by double pendulums

since they exhibit chaotic behavior. I attempted to model the connecting beam as several point

masses connected by springs. When I attempted this simulation it did not work. The position

of the point masses grew larger and larger until the simulation ran out of memory. As far as I

could discern my coding was correct and the problem came from the model and/or the numerical

method. After unsuccessfully trying to fix it, I left this problem. In this paper I return to the

same questions that intrigued me as a high schooler, however with a revised model and a few

other tools on my belt.
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Chapter 2

Modeling Techniques

2.1 Lagrangian Mechanics

In Newtonian mechanics we consider the forces acting on the system to find the equa-

tions of motion. However for more complicated systems this can become quite tedious. It

is easier to compute the kinetic and potential energy for the conservative forces since these

are scalar quantities (and forces are vectors). Using these energies we can use the Lagrangian

approach to derive the equations of motion.

Let T represent the kinetic energy of a system and let V represent the potential energy.

The Lagrangian is defined as L := T � V . Lagrange’s equations states that

d

dt

✓
@L

@q̇

j

◆
=

@L

@q

j

(2.1)

where {q
j

}n
j=1

are the generalized coordinates and {q̇
j

}n
j=1

are the generalized velocities of the

system. If the system has non-conservative forces Q

j

(such as friction) which a↵ect the j

th

generalized coordinate we can incorporate them into Lagrange’s equation as follows:

d

dt

✓
@L

@q̇

j

◆
� @L

@q

j

= Q

j

. (2.2)

More information about Lagrangian mechanics, such as the derivation of Equations 2.1

and 2.2, can be found in several sources (such as [1]).

2.2 Krasovskii-Lasalle Invariance Principle

We will now develop some machinery to determine the stability of some of the systems

we will study. We follow the definitions and theorems given in [2]. A continuous function V (x) is

positive definite if V (x) > 0 for all x 6= 0 and V (0) = 0. Similarly, a function is negative definite

if V (x) < 0 for all x 6= 0 and V (0) = 0. We say that a function V (x) is positive semidefinite
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if V (x) can be zero at points other than x = 0 but otherwise V (x) is strictly positive. We say

V (x) is negative semidefinite if V (x) can be zero at points other than x = 0 but otherwise V (x)

is strictly negative.

Suppose we have a time-invariant system ẋ = F (x), where x 2 Rn and ẋ denotes the

time derivative of x. Let x(t;x
0

, t

0

) denote the solution of this equation at time t with the initial

condition x(t
0

) = x

0

. The set M ⇢ Rn is said to be an invariant set if for all y 2 M and t

0

� 0,

we have x(t; y, t
0

) 2 M for all t � t

0

.

We want to know what happens as t ! 1. We say x

e

is (locally) asymptotically stable

if for all ✏ > 0, there exists a � > 0 such that

kx(0)� x

e

k < � ) kx(t)� x

e

k < ✏ for all t > 0

and x(t) ! x

e

as t ! 1 for x(t) su�ciently close to x

e

. Heuristically this mean that all nearby

points converge to the equilibrium point.

Theorem 2.1. (Krasovskii-LaSalle Principle). Let V : Rn ! R be a locally positive definite

function such that on the compact set ⌦
r

= {x 2 Rn : V (x)  r} we have V̇ is negative

semidefinite. Define S = {x 2 ⌦
r

: V̇ (x) = 0}. As t ! 1, the trajectory tends to the

largest invariant subset of S. In particular, if S contains no nontrivial invariant sets then 0 is

asymptotically stable. The function V is an “energy-like” function called a Lyapunov function.

2.3 Runge-Kutta Method

Most Calculus students learn Euler’s method to numerically solve di↵erential equations.

The formula simply states that for a di↵erential equation ẏ = f(t, y),

y

n+1

= y

n

+ hf(t
n

, y

n

) and t

n+1

= t

n

+ h

where h is the step size. While this is a useful method for educational purposes, it is not very

useful in practice. This method is not as accurate as other methods using the same step size

nor is it as stable as others.

For this paper we will use a fourth-order Runge-Kutta method. This method states

that for the di↵erential equation ẏ = f(t, y),

3



k

1

= hf(t
n

, y

n

)

k

2

= hf

✓
t

n

+
h

2
, y

n

+
k

1

2

◆

k

3

= hf

✓
t

n

+
h

2
, y

n

+
k

2

2

◆

k

4

= hf (t
n

+ h, y

n

+ k

3

)

y

n+1

= y

n

+
k

1

6
+

k

2

3
+

k

3

3
+

k

4

4

t

n+1

= t

n

+ h

where h is the step size.

In this paper we will study many second order di↵erential equations. To numerically

solve them we will rewrite them into a system of first order equations. Suppose that ÿ = g(t, y, ẏ).

If v = ẏ, then v̇ = ÿ = g(t, y, ẏ). This gives rise to the system

8
<

:
ẏ = v

v̇ = g(t, y, ẏ).

We can then apply the Runge-Kutta method to this system of equations to numerically solve

the di↵erential equation.

4



Chapter 3

Relevant Dynamical Systems

Next we will study some simple dynamical systems which will be important in the work

to follow. A reader with some physics background will probably have seen these systems before

and the derivation of the equations of motion using Newtonian mechanics. Here we shall derive

these equations using Lagrangian mechanics outlined above to help the reader grasp the use of

the Lagrangian method.

3.1 Springs: Simple Harmonic Oscillators

M

x

k

Figure 3.1: A Spring on a Frictionless Surface

We will first examine ideal springs. Hooke’s law tells us that F = �kx where x is the

displacement from the spring’s rest length and k is the spring constant. Since F = ma = mẍ we

find that ẍ = � k

m

x. We can also arrive at this using Lagrangian mechanics. The kinetic energy

of the mass at the end of the spring is 1

2

mẋ

2 and the potential energy stored in the spring is
1

2

kx

2. Hence we find that L = 1

2

mẋ

2 � 1

2

kx

2. Applying Lagrange’s Equation 2.1, we find that

mẍ = �kx. (3.1)

To visualize solutions to these systems we plot the position x horizontal and the velocity ẋ

vertically. Such a plot is called a phase portrait. Numerically integrating Equation 3.1, using

5



the Runge-Kutta method outlined in Section 2.3 and the Python programing language, with

k = m we get the phase portrait shown in Figure 3.2a.
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(a) Undamped Spring
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(b) Damped Spring

Figure 3.2: Phase Portraits for Damped and Undamped Springs

A more realistic model accounts for friction. Applying Lagrange’s Equation 2.2 with

Q

x

= �µẋ we find that

mẍ+ µẋ+ kx = 0. (3.2)

Numerically integrating Equation 3.2 with k = m and µ/m = 0.2 we get the phase portrait

shown in Figure 3.2b.

It is clear from the phase portraits that over time all of the trajectories will tend to the

origin. We can prove this using Krasovskii-LaSalle principle. To do this, consider the function

V =
1

2
mẋ

2 +
1

2
kx

2

. (3.3)

Taking a derivative of V and substituting in Equation 3.2, we find V̇ = mẋẍ + kxẋ = mẋẍ �
ẋ(mẍ+ µẋ) = �µẋ

2. Hence V is positive definite and V̇ is negative semidefinite. Consider the

set S = {(x, ẋ) 2 R2 : V̇ = 0}. The Krasovskii-LaSalle principle tells us that any trajectory

near the origin will tend towards the largest invariant subset of S. Since V̇ = 0 implies that

ẋ = 0 we know S = {(x, ẋ) 2 R2 : ẋ = 0}. For any trajectory contained in S we must have

ẋ = 0 identically, meaning that ẍ = 0. Hence by Equation 3.2, we find that x = 0. Accordingly

the only trajectory in S is trivial, meaning the largest invariant subset of S is trivial. Ergo all

trajectories are asymptotically stable to the origin.
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3.2 Pendulums

O

l

m

✓

Figure 3.3: A Pendulum

Consider a point with mass m attached to a massless rod of length l (see Figure 3.3).

If x represents the x-coordinate of the mass relative to O and y represents the y-coordinate of

the mass relative to O, then x = l sin ✓ and y = �l cos ✓. Hence

T =
1

2
m

⇥
ẋ

2 + ẏ

2

⇤
=

1

2
m

⇥
(l✓̇ cos ✓)2 + (l✓̇ sin ✓)2

⇤
=

1

2
ml

2

✓̇

2

.

The potential energy is simply V = mgy = �mgl cos ✓, meaning L = T�V = 1

2

ml

2

✓̇

2+mgl cos ✓.

Applying Lagrange’s Equation 2.1, we find

✓̈ +
g

l

sin ✓ = 0. (3.4)

Numerically integrating Equation 3.4 with g = l we find the phase portrait in Figure 3.4a.
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(a) Undamped Pendulum
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(b) Damped Pendulum

Figure 3.4: Phase Portraits for Damped and Undamped Pendulums

Suppose that the pendulum experiences a frictional force of Q

✓

= �µ✓̇. Applying

Lagrange’s Equation 2.2 we find

ml

2

✓̈ + µ✓̇ +mgl sin ✓ = 0. (3.5)
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Numerically integrating Equation 3.5 with g = l and µ/ml

2 = 0.2 we get the phase portrait in

Figure 3.4b.

We can again see that the damped pendulum has asymptotically stable equilibrium

points. To show that the origin is asymptotically stable, consider the function

V =
1

2
ml

2

✓̇

2 +mgl(1� cos ✓)

where ✓ 2 (�⇡,⇡) (✓ = ±⇡ gives unstable equilibria). Computing the the derivative and using

Equation 3.5, we find V̇ = ml

2

✓̇✓̈ + mgl sin(✓)✓̇ = �✓̇[gml sin(✓) + µ✓̇] + mgl sin(✓)✓̇ = �µ✓̇

2.

Hence V is locally positive definite and V̇ is negative semidefinite. Now consider S = {(✓, ✓̇) 2
R2 : V̇ = 0}. We want to find the largest invariant subset of S. Since V̇ = 0 implies that ✓̇ = 0,

we know any trajectory must have ✓̇ = 0 identically. This means that ✓̈ = 0. Plugging this into

Equation 3.5, we find that sin ✓ = 0. Since ✓ 2 (�⇡,⇡), we see that ✓ = 0. Hence the only

trajectory in S is where (✓, ✓̇) = (0, 0), which by the Krasovskii-LaSalle principle shows that the

origin is asymptotically stable.

3.3 Clocks
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(a) Phase Portrait for Clock
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(b) Limit Cycle for Clock

Figure 3.5: Phase Portraits and Limit Cycle of Clocks

Clocks clearly encounter fiction. A mechanism called an escapement supplies energy

so clocks keep ticking. Following the model outlined in [5], we model the escapement as a Van

der Pol oscillator. The escapement adds an external torque D(✓, ✓̇) = e(�2 � ✓

2)✓̇ where e is a

constant which represents the strength of the escapement and � represents the critical angle. If

|✓| < � then the escapement will supply energy to the pendulum. If |✓| > � the escapement will

dampen the pendulum. Adding the escapement makes Q
✓

= �µ✓̇ + e(�2 � ✓

2)✓̇, which yields

✓̈ = �g

l

sin ✓ � µ

ml

2

✓̇ +
e

ml

2

(�2 � ✓

2)✓̇. (3.6)
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Numerically integrating Equation 3.6 for four minutes we get the phase portrait in

Figure 3.5a. If we only plot the last two minutes of the simulation we can easily see that all

initial conditions tend to the same limit cycle, shown in Figure 3.5b. For both simulations g = l,

µ/ml

2 = 0.2, e/ml

2 = 1.2, and � = 0.5.

3.4 Driven Pendulum

The driven pendulum is similar to a normal pendulum, except that the driven pendulum

is driven by an external force of A cos(!t), where A is the forcing amplitude and ! is related

to the forcing frequency. Unlike the escapement in a clock, this forcing is a function of time.

While it is periodic, it may or may not coincide with the natural frequency of the pendulum.

This can result in periodic, quasi-periodic, or chaotic behavior.

The Lagrangian for the driven pendulum is the same as the pendulum. Since there is a

nonconservative driving forcing of A cos(!t) and a damping of �µ✓̇, we have Q
✓

= A cos(!t)�µ✓̇.

Using Equation 2.2 we find

ml

2

✓̈ +mgl sin ✓ + µ✓̇ = A cos(!t). (3.7)

A phase portrait for the driven pendulum is plotted in Figure 3.6a with ml

2 = mgl = 1,

µ = 1/4, A = 3/2, and ! = 2/3. These conditions result in chaotic behavior which gives rise to

a cluttered phase portrait.
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(a) Phase Portrait for Driven Pendulum
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(b) Poincaré Section for Driven Pendulum

Figure 3.6: Phase Portrait and Poincaré Section for the Driven Pendulum

One way to see more interesting features of the driven pendulum is to create a Poincaré

section. Imagine that we place the driven pendulum in a dark room, but turn a light on at a

fixed frequency to record the pendulum’s angle and angular velocity. We can then use this data

to create a phase portrait. If we strobe the pendulum at the same frequency as the driving force,

we get the Poincaré section shown in Figure 3.6b.
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Another way to study the driven pendulum is through bifurcation diagrams. Suppose

we fix all the parameters except for one. We still strobe the pendulum but just record the angular

velocity. We then plot the angular velocity vertically and the parameter we vary horizontally. We

can vary the forcing amplitude (Figure 3.7), the drive frequency (Figure 3.8), and the damping

(Figure 3.9). If we look at the damping bifurcation diagram, we have periodic motion when

µ > 0.5. We get quasi-periodic motion when µ ⇡ 0.42. We get chaotic motion when µ < 0.1.
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Figure 3.7: Forcing Bifurcation Diagram
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Figure 3.8: Drive Frequency Bifurcation Diagram
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Figure 3.9: Damping Bifurcation Diagram

3.5 Error in Runge-Kutta Method

A simple way to gauge the error committed by the Runge-Kutta algorithm is to compare

the predicted theoretical energy of the system to the energy of the of the simulated system.

For this method to work we need the energy to be conserved. Hence this method will only

work for the frictionless spring and the frictionless pendulum, as all the other systems have

nonconservative forces. Recall that relative error is given by |E
p

� E

s

|/E
p

, where E

p

is the

predicted theoretical energy and E

s

is the simulated energy. In Figure 3.10a we show the

relative error versus time for the spring with a step size of 0.01. In Figure 3.10b we show the

relative error for the pendulum with a step size of 0.001.
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Figure 3.10: Error encountered using Runge-Kutta for our Conservative Systems
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Chapter 4

A Model of Two Coupled Clocks

4.1 Experimental Results Motivating Our Model

In [4], the authors attempted to reproduce Huygens’ result experimentally. They first

mounted two pendulum clocks to a wall. However they did not observe synchronization. Next

they took two tables and placed a block of wood which spanned the gap between the tables.

They then hung the two pendulum clocks from the beam. However they still did not observe

synchronization. Next they placed two small cylindrical rollers under the beam so the beam could

move back and forth. This modification made both in-phase and out-of-phase synchronization

possible. Since it was experimentally shown that this set-up causes the clocks to synchronize it

will serve as the basis for our model.

4.2 Model and Equations of Motion

In this model we will consider two pendulums with length l and point mass m attached

at the end, a�xed to a common support of mass M (as shown in Figure 4.1). The common

support is then attached to a spring of spring constant k. As the common support moves it

experiences damping. Suppose that the pendulums have an escapement mechanism described

by D

i

= e(�2 � ✓

2

i

)✓̇
i

which is the Van der Pol term we used to model clocks (i = 1 or 2). Let

x measure the displacement of the support (with x = 0 corresponding to the spring at its rest

length), and let ↵ and � be fixed distances with � > 2l (ensuring the pendulums never collide).

If x
l

represents the x-coordinate of the left pendulum relative to O and y

l

represents

the y-coordinate of the left pendulum relative to O, then x

l

= x+↵+ l sin ✓
1

and y

l

= �l cos ✓
1

.

Hence the kinetic energy from the left pendulum is

T

l

=
1

2
m(ẋ

l

2 + ẏ

l

2) =
1

2
m

⇥
(ẋ+ l✓̇

1

cos ✓
1

)2 + (l✓̇
1

sin ✓
1

)2
⇤
.
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✓
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Figure 4.1: Two Pendulums on a Moving Support, Attached to a Damped Spring

Similarly if x
r

represents the x-coordinate of the right pendulum relative to O and y

r

represents

the y-coordinate of the right pendulum relative to O, then x

l

= x + ↵ + � + l sin ✓
2

and y

l

=

�l cos ✓
2

. Hence the kinetic energy from the right pendulum is

T

r

=
1

2
m(ẋ

r

2 + ẏ

r

2) =
1

2
m

⇥
(ẋ+ l✓̇

2

cos ✓
2

)2 + (l✓̇
2

sin ✓
2

)2
⇤
.

Since the kinetic energy of the support is simply 1

2

Mẋ

2 we find the total kinetic energy is

T =
1

2
(M + 2m)ẋ2 +mlẋ

⇥
✓̇

1

cos ✓
1

+ ✓̇

2

cos ✓
2

⇤
+

1

2
ml

2

⇥
✓̇

1

2

+ ✓̇

2

2

⇤
.

The potential energy is simply the sum of the energy stored in the spring plus the gravitation

potential of the two pendulums, which is

V =
1

2
kx

2 +mgy

l

+mgy

r

=
1

2
kx

2 �mgl cos ✓
1

�mgl cos ✓
2

.

Hence we find the Lagrangian of the system is

L =
1

2

�
M+2m

�
ẋ

2+mlẋ

⇥
✓̇

1

cos ✓
1

+ ✓̇

2

cos ✓
2

⇤
+
1

2
ml

2

⇥
✓̇

1

2

+ ✓̇

2

2

⇤� 1

2
kx

2+mgl cos ✓
1

+mgl cos ✓
2

.

Since not all the forces are conservative, we must use Langrange’s Equation 2.2. The

friction in the frame is incorporated with Q

x

= �µẋ, the escapement for the left pendulum is

incorporated with Q

✓1 = D

1

= e(�2�✓

2

1

)✓̇
1

and similarly the escapement for the right pendulum

is incorporated with Q

✓2 = D

2

= e(�2�✓

2

2

)✓̇
2

. Applying Lagrange’s Equation 2.2 with the three

generalized coordinates x, ✓
1

, ✓

2

yields
8
>><

>>:

gml sin ✓
1

+mlẍ cos ✓
1

+ml

2

✓̈

1

= e(�2 � ✓

2

1

)✓̇
1

gml sin ✓
2

+mlẍ cos ✓
2

+ml

2

✓̈

2

= e(�2 � ✓

2

2

)✓̇
2

(M + 2m)ẍ+ kx+ µẋ+ml

⇥
✓̈

1

cos ✓
1

+ ✓̈

2

cos ✓
2

⇤
= ml

⇥
✓̇

1

2

sin ✓
1

+ ✓̇

2

2

sin ✓
2

⇤
.

(4.1)
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4.3 Asymptotic Stability with Krasovskii-LaSalle

Following the ideas in [5] we can show a simplified version of Equation 4.1 tends to

out-of-phase synchronization. When we use the Krasovskii-LaSalle principle, we want to define

our coordinates such that the origin is the asymptotically stable point. Since we are interested

in showing that trajectories tend towards out-of-phase synchronization, we want to introduce

the variable ✓ = ✓

1

+ ✓

2

. Doing so means out-of-phase synchronization will be achieved when

✓ = ✓̇ = 0. However we can not introduce this in Equation 4.1. We can simplify Equation 4.1

by linearizing the trigonometric functions and dropping the squared terms. After doing this we

can add the first two equations in 4.1 to get ✓. Doing so yields

8
<

:
gml✓ + 2mlẍ+ml

2

✓̈ = 0

(M + 2m)ẍ+ kx+ µẋ+ml✓̈ = 0.

(4.2a)

(4.2b)

Consider the function

V = mgl✓

2 + 2klx2 + 2Mẋ

2 +m(l✓̇ + 2ẋ)2. (4.3)

It is clear that V is positive definite. Di↵erentiating V and using Equation 4.2, we find

V̇ = 2mgl✓✓̇ + 2ml

2

✓̇✓̈ + 4kxẋ+ 4Mẋẍ+ 8mẋẍ+ 4ml[✓̈ẋ+ ✓̇ẍ]

= 2✓̇(mgl✓ +ml

2

✓̈) + 4kxẋ+ 4(M + 2m)ẋẍ+ 4ml[✓̈ẋ+ ✓̇ẍ]

= 2✓̇(mgl✓ +ml

2

✓̈) + 4ẋ[kx+ (M + 2m)ẍ] + 4ml✓̈ẋ+ 4ml✓̇ẍ

= 2✓̇(�2mlẍ) + 4ẋ[�µẋ�ml✓̈] + 4ml✓̈ẋ+ 4ml✓̇ẍ

= �4ml✓̇ẍ� 4µẋ2 � 4mlẋ✓̈ + 4ml✓̈ẋ+ 4ml✓̇ẍ

= �4µẋ2

.

Hence V̇ is negative semidefinite.

Let S = {(✓, ✓̇, x, ẋ) 2 R4 : V̇ = 0}. The Krasovskii-LaSalle Principle tells us that any

trajectory tends to the largest invariant subset of S. Since V̇ = �4µẋ2, V̇ = 0 implies that

ẋ = 0. Since we are only interested in trajectories which are contained entirely within S, we

know ẋ must be identically zero which means that ẍ = 0 and x is a constant. Applying this to

Equation 4.2b we see that kx+ml✓̈ = 0 which means

✓̈ = � kx

ml

= constant.

Applying this to Equation 4.2a we find that gml✓ � lkx = 0 which means that

✓ =
kx

gm

= constant.

This means that ✓̇ = ✓̈ = 0. Since ✓̈ = ẍ = 0, Equation 4.2a tells us that ✓ = 0. Hence the only

invariant subset of S is (✓, ✓̇, x, ẋ) = (0, 0, 0, 0). Since the only invariant subset of S is trivial, the
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Figure 4.2: Time Series for Out-of-Phase Synchronization

Krasovskii-LaSalle Principle tells us that the origin is asymptotically stable. Since ✓ = ✓

1

+ ✓

2

,

this shows that for all trajectories ✓
1

+ ✓

2

tends to zero.

4.4 Investigation of Simulation

While the stability shown in Section 4.3 is interesting in that it shows the result Huy-

gen’s observed, it does not paint a complete picture. To fully understand what happens we need

to return to Equation 4.1. We now will turn our attention to the numerical simulations using

the Runge-Kutta method outlined in Section 2.3 and the Python programing language.

For our first simulation let M = 5, k = 0.1, µ = 7,m = 0.1, l = 1, e = 1.13, � = 0.12

and g = 9.8. We start with ✓

1

= 1.3, ✓
2

= 1.1 and ✓̇

1

= ✓̇

2

= x = ẋ = 0. Looking at a graph

of the time series in Figure 4.2b of each pendulum they seem to be close to an out-of-phase

synchronization. If the pendulums are exactly out-of-phase then we would expect ✓
1

+ ✓

2

= 0.
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Figure 4.3: Time Series for In-of-Phase Synchronization

Graphing ✓

1

+✓

2

versus time it appears that ✓
1

+✓

2

is tending towards zero, but is not identically

zero, as shown in Figures 4.2c and 4.2d.

Now let’s change the damping in the beam and let µ = 3. Looking at a graph of the

time series in Figure 4.3b of each pendulum they seem to be close to an in-phase synchronization.

If the pendulums are in-phase then we would expect ✓
1

� ✓

2

= 0. Graphing ✓

1

� ✓

2

versus time

it appears that ✓
1

� ✓

2

is tending towards zero, but is not identically zero, as shown in Figures

4.3c and 4.3d.

This raises the question of how do the dynamics change as we vary the damping in

the beam. We have just seen for small damping that in-phase synchronization occurs and for

larger damping out-of-phase synchronization occurs. What happens as we vary the damping?

How does the system transition from in-phase to out-of-phase synchronization? To study this

we need to develop a criteria for when synchronization is achieved.

The above time series graphs show that while either ✓

1

+ ✓

2

or ✓

1

� ✓

2

is tending to
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zero, it does not become identically zero. Hence we define in-phase synchronization to mean

there exists a T such that |✓
1

(t) � ✓

2

(t)| < ✏ for all t > T (where ✏ is small). We define out-

of-phase synchronization to mean there exists a T such that |✓
1

(t) + ✓

2

(t)| < ✏ for all t > T

(where ✏ is small). We will call T the time when synchronization is achieved. We can write a

program to find the time when synchronization is achieved as we vary µ and to classify the type

of synchronization, which is shown in Figure 4.4.
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Figure 4.4: Time to Synchronize vs. Damping (✏ = 0.01)

This picture suggests there is a critical damping where the synchronization switches

from in-phase to out-of-phase. We are interested in what happens at this critical damping. In

order to study it we need to find where this critical damping occurs. Let µ

c

be the critical

damping. To estimate µ

c

we will use a bisection method. We start with µ

min

= 4 which we

know gives in-phase synchronization and µ

max

= 6 which gives out-of-phase synchronization.

We test the midpoint to see what type of synchronization occurs. If in-phase synchronization

occurs we replace µ

min

with the midpoint. If out-of-phase synchronization is achieved, then

µ

max

is replaced with the midpoint. This is repeated until neither in-phase nor out-of-phase

synchronization is detected at the midpoint. It is possible that synchronization occurs at a

time greater than the time the simulation ran, but we know for sure that the actual critical

damping must be between µ

min

and µ

max

. Running this we find that 4.96417299006  µ

c


4.96417299029. Figure 4.5 shows the time series where µ = 4.96417299018 (the midpoint of the

interval we found). As we can see, no synchronization occurs here.
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Chapter 5

Coupled Driven Pendulums

As a high schooler I was curious what would happen when two double pendulums were

coupled in a fashion similar to Huygens’ clocks. I was curious as to how the two chaotic oscillators

would influence one another. I explained this to Richard Montgomery. He proposed that working

with driven pendulums would be easier than double pendulums since there are fewer variables

but still lets me look at the coupling of two chaotic oscillators. Another advantage to using

two driven pendulums is that the equations of motion are very similar to the equations we used

for the coupled clocks. We simply need to replace the equation of the clock escapement (which

gives rise to a limit cycle as we saw in Section 3.3) with that of the time dependent function

A cos(!t) (which can give rise to chaotic behavior as we saw in Section 3.4). While there is an

abundance of work done looking at the coupling of chaotic oscillators, I did not find any papers

which study this particular system.

5.1 Equations of Motion

The Lagrangian for this system is the same as the Lagrangian for the coupled clocks in

the previous chapter. The only di↵erence arises in the nonconservative forces. We simply need

to replace the equation for the escapement with the equation for the time dependent driver.

Hence Q

✓1 = Q

✓2 = A cos(!t). This yields the system

8
>><

>>:

gml sin ✓
1

+mlẍ cos ✓
1

+ml

2

✓̈

1

= A cos(!t)

gml sin ✓
2

+mlẍ cos ✓
2

+ml

2

✓̈

2

= A cos(!t)

(M + 2m)ẍ+ kx+ µẋ+ml

⇥
✓̈

1

cos ✓
1

+ ✓̈

2

cos ✓
2

⇤
= ml

⇥
✓̇

1

2

sin ✓
1

+ ✓̇

2

2

sin ✓
2

⇤
.

(5.1)
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5.2 Time Series

Let’s look at how this system evolves over time. For these simulations we let M = 7.5,

k = 0.11, µ = 10, m = 0.1, l = 1.0, A = 0.17, ! = 1 and g = 9.81. We start at ✓
1

= 2, ✓
2

= �2,

and ✓̇

1

= ✓̇

2

= x = ẋ = 0. As we can see, there is some irregular behavior at the start but it

appears to settle down into nonchaotic behavior, as shown in Figure 5.1. Looking at the sum

✓

1

+ ✓

2

also helps us see what is going on, which is displayed in Figures 5.1b, 5.1d, and 5.1f.

5.3 Phase Portraits

Let’s now look at some phase portraits for the two coupled driven pendulums. We

saw before in Section 3.4 that the phase portrait for the driven pendulum was very cluttered.

However we see that when we look at the phase portraits for each of the driven pendulums,

shown in Figure 5.2, they are much less cluttered.
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(a) Left Pendulum Phase Portrait
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(b) Right Pendulum Phase Portrait

Figure 5.2: Phase Portraits for Coupled Driven Pendulums

Furthermore, if we only look at the second half of the data, it appears that the behavior

is no longer chaotic, as shown in Figure 5.3. This suggests that over time the system becomes

less chaotic. This is very surprising considering the behavior we observed for the uncoupled

system. Of course this is for just one set of initial conditions and system parameters. Instead

of looking at several phase portraits we can get the same information in a bifurcation diagram.

5.4 Bifurcation Diagrams

As we saw in Section 3.4, the bifurcation diagrams gave us an idea of when the system

is periodic, quasi-periodic, or chaotic. The phase portraits we looked at in the previous section
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(b) Right Pendulum Limit Cycle

Figure 5.3: Limit Cycle for Coupled Driven Pendulums

suggest that the motion of both pendulums settles down. As we did in Section 3.4, we want to

use the bifurcation diagram to see where we get periodic, quasi-periodic, or chaotic behavior.

Recall that we vary one of the parameters and record the angular velocity. We strobe

the angular velocity at the same frequency as the driver. We only look at the second half of

the data so we can see where the system tends to in the long run. The resulting bifurcation

diagrams shows that we no longer get chaotic behavior for either driven pendulum as we vary

forcing (Figure 5.4). If we vary the drive frequency (Figure 5.5) we also don’t see chaotic

behavior. Nevertheless we see some chaotic behavior for small damping (Figure 5.6). However

when we compare the bifurcation diagrams for the coupled driven pendulums in Figures 5.4,

5.5, and 5.6 to the bifurcation diagrams of the uncoupled driven pendulums in Figures 3.7, 3.8,

and 3.9 there are some striking di↵erences. While the uncoupled system does have regions of

periodic and quasi-periodic motion, much of the motion is dominated by chaos. However only a

small portion of the bifurcation diagrams show chaos. This seems to suggest that the coupling

reduces the chaotic tendencies of the driven pendulum.
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Figure 5.4: Forcing Bifurcation Diagrams
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Figure 5.5: Drive Frequency Bifurcation Diagrams
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Figure 5.6: Damping Bifurcation Diagrams
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Chapter 6

Future Work and Conclusions

The biggest surprise encountered in this work was with the coupled driven pendulums.

Seeing this coupling of two chaotic oscillators produce more nonchaotic behavior than the un-

coupled system was not expected. Is this an artifact of the numerical methods used or is this

truly how this system behaves? If it is truly how the system behaves, why does this happen? Is

there a global attractor to which all initial conditions are drawn?

We also observed an interesting phenomena when looking at the coupled clocks. As

we varied the damping there was a transition from in-phase synchronization to out-of-phase

synchronization. This suggests that there is a bifurcation which occurs at the critical damping.

It would be interesting to study the dynamics behind this bifurcation.

Another area where more work can be done is in visualizing the data. Both coupled

oscillators live in a six dimensional phase space. To see our data we looked at two dimensional

graphs. We could look at three dimensional plots, which could potentially yield more informa-

tion. Additionally, we could also look at other ways to analyze the data. We primarily looked

at graphs which seemed to indicated certain phenomena, but a more formal analysis would be

needed to show these actually exist (and are not simply an artifact of the numerical methods).

We focused on the changes in the dynamics as we varied the damping in the coupled

clocks. For the coupled driven pendulums we varied damping, forcing, and drive frequency.

What happens to the dynamics as we vary the ratio of the mass of the beam to the mass of the

pendulum? This would be an interesting question for both systems. It would also be interesting

to fix the system parameters and simply vary the initial conditions. Both of these could be

compared to experimental results for the coupled clocks.

While the work done here has shown some interesting results, there is still much left

to explore. Perhaps another o↵-the-wall observation will be made while lying in bed and spark

a whole new realm of discovery.
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Supplemental Website

One of the limitations in presenting this material in a written paper is fitting the graphs

on a sheet of paper. For example, in Figure 4.2 we look at 500 seconds worth of a time series.

I presented the first 50 seconds and last 25 second to show how the system started and ended.

However if I placed all 500 seconds on a sheet of paper it would be hard to discern what is

happening. To present the reader with the whole picture I have placed larger images on-line

which one can scroll through to see the entire time series. I have also placed higher resolution

pictures of other plots, such as the Poincaré section of the driven pendulum in Figure 3.6b.

The website can be found at http://thesis.lebailly.us/.
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