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1 Introduction

In this paper we introduce the idea of induced representations and use them help find character tables.
An induced representation is a representation which is constructed from a representation of a subgroup.
We will show how to construct the induced representation and how to construct the character directly
from the character of the subgroup (thus avoiding matrices involved with the representations). We will
then use induced representations to help find the character table for the Quaternions, A4, and S4.

2 Induced Representations

Definition 2.1. Suppose that H ≤ G and ρ is a degree m representation of H (over either R or C).
Then,

ρ̇(g) =

{
ρ(g) if g ∈ H
0m if g 6∈ H

Let n = G : H (the number of cosets of H in G). Consider a representative from each coset
{g1 = 1, g2, g3, . . . , gn}.

Definition 2.2. The induced representation ρG(g) is constructed from matrices of ρ̇. The (i,j) subblock
of the induced representation is ρ̇(g−1i ggj).

ρG(g) =



ρ̇(g−11 gg1) · · · ρ̇(g−11 ggj) · · · ρ̇(g−11 ggn)
...

. . .
...

. . .
...

ρ̇(g−1i gg1) · · · ρ̇(g−1i ggj) · · · ρ̇(g−1i ggn)
...

. . .
...

. . .
...

ρ̇(g−1n gg1) · · · ρ̇(g−1n ggj) · · · ρ̇(g−1n ggn)


Recalling that n is the number of cosets and the degree of ρ is m,

Theorem 2.3. ρG(g) : G→ GL(V ) is a representation where deg(V ) = mn.

Proof. The proof that ρG(g) is a representation is rather cumbersome and does not add much value to
the readers understanding. It is left as an exercise for Rolf.

Regarding the degree of ρG(g), we have n m × m matrices in each row and in each column. Thus
the resulting matrix for ρG(g) is a mn×mn, so ρG(g) is degree mn.

To help demonstrate how to construct the induced representation, we present the following examples.

Example 2.4. We will construct the representation ρD4 of D4 induced by the representation ρ of H,
where

D4 = 〈r, c | r4 = c2 = 1, cr = r−1c〉

H = 〈r〉 D4 = H ∪ cH

and
ρ : H → GL(C)

ρ(r) = [i]

Our coset representatives g1 and g2 are 1 and c, respectively.
It is useful to calculate a table of values for ρ̇ (given by defintion 2.1).

ρ̇(1) = [1] ρ̇(r) = [i]

ρ̇(r2) = [−1] ρ̇(r3) = [−i]
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ρ̇(c) = ρ̇(rc) = ρ̇(r2c) = ρ̇(r3c) = [0]

Then, using definition 2.2, we find

ρD4(r) =

(
ρ̇(1−1r1) ρ̇(1−1rc)
ρ̇(c−1r1) ρ̇(c−1rc)

)
=

(
ρ̇(r) ρ̇(rc)
ρ̇(r3c) ρ̇(r3)

)
=

(
i 0
0 −i

)
Similarly for c ∈ D4, we have

ρD4(c) =

(
ρ̇(1−1c1) ρ̇(1−1cc)
ρ̇(c−1c1) ρ̇(c−1cc)

)
=

(
ρ̇(c) ρ̇(1)
ρ̇(1) ρ̇(c)

)
=

(
0 1
1 0

)
Example 2.5. As a second example, we will construct another induced representation of D4 using a
slightly more difficult representation of H. We will let

µ : H → GL(R2)

µ(r) =

(
0 −1
1 0

)
and define µ̇ according to definition 2.1. Since µ is a degree 2 representation of H, and |D4 : H| = 2,
we expect to see 4× 4 matrices. Sure enough, appealing to definition 2.2 we find

µD4(r) =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


and

µD4(c) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


3 Induced Character

Now that we have a feel for finding induced representations, it would be nice if we could find their
characters without finding the representations (as these can easily turn into large matrices).

Let ρ be a representation of H and let χ be the character of ρ. Consider the trace of ρ̇ (see defini-
tion 2.1).

tr(ρ̇(g)) =

{
χ(g) if g ∈ H

0 if g 6∈ H

This motivates the following definition:

Definition 3.1. χ̇(g) =

{
χ(g) if g ∈ H
0 if g 6∈ H

Definition 3.2. χG(g) =

n∑
i=1

χ̇(g−1i ggi)

Theorem 3.3. The character of the induced representation ρG(g) is χG(g)

Proof. We wish to find the character of the induced representation ρG(g). Note that each submatrix
along the diagonal has the form ρ̇(g−1i ggi). Now consider the trace of the induced representation.
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tr(ρG(g)) =

n∑
i=1

tr(ρ̇(g−1i ggi))

=
∑
i=1

χ̇(g−1i ggi) by definition 3.1

= χG(g)

Note that with this definition induced character involves a sum over representatives from each coset
of G. This could cause a problem: what if different choices of representatives result in a different induced
character? Fortunately this does not happen, and we will show an equivalent defintion in the next section
which demonstrates this.

4 Another Definition of Induced Character

Definition 4.1. χG(g) =
1

|H|
∑
x∈G

χ̇(x−1gx)

We will show definition 3.2 is equivalent to definition 4.1
Let G be a group, g ∈ G with h ∈ H ≤ G and χ a character of H. By definition, we have that h−1gh

is a conjugate of g. We also have a useful result from abstract algebra that says

h−1gh ∈ H ⇐⇒ g ∈ H (1)

First, we will show a useful lemma.

Lemma 4.2. χ̇(g) = χ̇(h−1gh), where χ̇ is defined as

χ̇(g) =

{
χ(g) g ∈ H

0 g /∈ H

Proof. We will consider two cases. In the first case, we have g ∈ H. From (1) we know that h−1gh must
also be in H. Then it follows from the Definition 3.2 that χ̇(g) = χ(g) and χ̇(h−1gh) = χ(h−1gh). Since
χ is a class function (recall that all characters are class functions) and h−1gh and g are conjugates, we
have that χ(g) = χ(h−1gh). Stringing these equalities together gives us our result

χ̇(g) = χ(g) = χ(h−1gh) = χ̇(h−1gh)

In the second case, we have g /∈ H, and our result follows immediately from the definition of χ̇:

χ̇(g) = χ̇(h−1gh) = 0

This is sufficient to show that χ̇(g) = χ̇(h−1gh).

We will now continue our proof that definitions 3.2 and 4.1 are equivalent.

Let giH be some coset of H in G. We will refer to gi as the coset representative of giH. Consider
the quantity

χ̇
(
(gih)−1g(gih)

)
Rewriting (gih)−1 as h−1g−1i and taking advantage of associativity, we have

= χ̇
(
h−1(g−1i ggi)h

)
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From the closure of the group G, we have g−1i ggi ∈ G, and by Lemma 4.2

= χ̇(g−1i ggi)

So far, we have
χ̇
(
(gih)−1g(gi)h

)
= χ̇(g−1i ggi)

For notational purposes, we will let x = gih ∈ giH. Then,

χ̇(x−1gx) = χ̇(g−1i ggi) (2)

Now, for each coset, giH ⊂ G, we can take the sum of (2) over all of the elements in giH∑
x∈giH

χ̇(x−1gx) =
∑

x∈giH
χ̇(g−1i ggi) (3)

But notice that the summand on the right hand side of (3) has no x dependence, and so when we evaluate
the sum, we just get |giH| copies of χ̇(g−1i ggi)∑

x∈giH
χ̇(x−1gx) = |giH|χ̇(g−1i ggi)

noting that |giH| = |H| (all cosets are created equal) and rearanging terms gives

χ̇(g−1i ggi) =
1

|H|
∑

x∈giH
χ̇(x−1gx) (4)

Plugging this into definiton 3.2, we find

χG(g) =

n∑
i=1

χ̇(g−1i ggi)

=

n∑
i=1

 1

|H|
∑

x∈giH
χ̇(x−1gx)


=

1

|H|

n∑
i=1

∑
x∈giH

χ̇(x−1gx)

=
1

|H|
∑
g∈G

χ̇(x−1gx)

where in our last step we have noticed that summing over all elements in all cosets is equivent to summing
over all elements of our group (this last statement holds because the cosets of giH partition G). This
establishes that definitions 3.2 and 4.1 for the induced character are equivalent.

5 Normal Subgroups

Theorem 5.1. Let H EG and let χ be a character of G. Then χG(g) = 0 for all g 6∈ G.

Proof. Since H is a normal subgroup of G, we have gHg−1 = H for all g ∈ G. This means that, for any
g ∈ G, conjugation by g moves no element of G that is inside H out of H, and, more importantly, moves
no element of G that is outside H into H. Then, for g /∈ G, all of our χ̇(x−1gx) in the summation in
Definition 4.1 are equal to zero (by Definition 3.1).
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6 Character Table for the Quaternion Group

We are now interested in studying the character table of Quaternions. Recall that the group of Quater-
nions are

H = {±1,±i,±j,±k}

where i2 = j2 = k2 = ijk = −1. Note that this group is non-Abelian.

There are five conjugacy classes: {1} , {−1} , {±i} , {±j} , and {±k}. Since each element’s in-
verse is its own conjugacy class, by homework problem 36a, we know the entries in the character table
are real.

Note that |H| = 8 = 12 + 12 + 12 + 12 + 22 is the only way to decompose 8 as the sum of 5 inte-
ger squares. Thus this gives us the first column of the character table. As usual, we have the trivial
representation as our first row. Thus,

H {1} {−1} {±i} {±j} {±k}
χ1 1 1 1 1 1
χ2 1
χ3 1
χ4 1
χ5 2

Note that the Quaternions have three subgroups of index 2, namely {±1,±i}, {±1,±j}, and {±1,±k}.
We know from homework problem 15b (and the fact that these are degree 1) that the character for the
elements in the group are +1 and the character for the elements not in the group are −1. This gives us
the next three rows of the character table.

H {1} {−1} {±i} {±j} {±k}
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 1 1 -1 1 -1
χ4 1 1 -1 -1 1
χ5 2

To help us find the last row of the character table, lets look at the character induced by the subgroup
N = {1,−1}. Let ρ : N → GL(R) be the representation ρ(1) = 1 and ρ(−1) = −1 (with character χ).

Recall that N EG if and only if gNg−1 = N for all g ∈ G. Note that

gNg−1 = {g1g−1, g(−1)g−1}
= {1gg−1, (−1)gg−1} (since 1 and -1 are in the center of G)

= {1,−1}
= N

Thus N E G. This means that we can use Theorem 5.1 to save time in computations. Lets now find
χG(g) when g ∈ N . Note that n = |H|/|N | = 8/2 = 4. The induced character (from Definition 3.2) is
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χG(1) =

4∑
i=1

χ̇(g−1i 1gi) =

4∑
i=1

χ̇(1)

=

4∑
i=1

χ(1) =

4∑
i=1

1

= 4

χG(−1) =

4∑
i=1

χ̇(g−1i (−1)gi) =

4∑
i=1

χ̇(−1)

=

4∑
i=1

χ(−1) =

4∑
i=1

−1

= −4

Coupling this with Theorem 5.1, we find the induced character is

H {1} {−1} {±i} {±j} {±k}
χG 4 -4 0 0 0

Notice that the inner product of χG with χ1, χ2, χ3, and χ4 is zero. χG is a linear combination of
irreducible characters, but cannot contain χ1, χ2, χ3 or χ4. This implies that χG = k ∗ χ5. Looking at
the character table thus far, we see that we must have k = 2. This completes the character table for the
Quaternions.

H {1} {−1} {±i} {±j} {±k}
χ1 1 1 1 1 1
χ2 1 1 1 -1 -1
χ3 1 1 -1 1 -1
χ4 1 1 -1 -1 1
χ5 2 -2 0 0 0

7 Character Table for A4

We are now interested in finding the character table for A4 (which is the subgroup of even permutations
in S4). First note that |A4| = |S4|/2 = 4!/2 = 12. There are four conjugacy classes, namely (1), (123),
(132), and (12)(34). Thus, since |A4| = 12 = 12 + 12 + 12 + 32 is the only way to write 12 as the sum
of 4 integer squares, these are the degreese of the irreducible representations. Thus, the character table
thus far looks like

A4 (1) (123) (132) (12)(34)
χ1 1 1 1 1
χ2 1
χ3 1
χ4 3

Now notice that (123) has order 3 in S4. Thus ρ((123)3)) = ρ((1)) = 1 = ρ((123))3 (where ρ is the
representation corresponding to χ2). Since ρ is degree 1, ρ((123)) must be a third root of unity. Since
we already have the trivial representation, it must be either ω or ω2 (where ω = (−1 +

√
3)/2). Thus

its character is either ω or ω2. Note that (132) has order 3 in S4. By the same logic above, we find that
the character of (132) is either ω or ω2.

Since we have two remaining degree 1 representations, we find for χ2((123)) = ω, χ2((132)) =
ω2, χ3((123)) = ω2, and χ3((132)) = ω. To satisfy orthonormality, we find that χ2((12)(34)) =
χ3((12)(34)) = 1.
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A4 (1) (123) (132) (12)(34)
χ1 1 1 1 1
χ2 1 ω ω2 1
χ3 1 ω2 ω 1
χ4 3

At this point we can use algebra to find the last row. Suppose that the last row looks like

A4 (1) (123) (132) (12)(34)
χ4 3 a c b

If this were the character, it would be orthogonal to the first three rows. This implies that

A4 (1) (123) (132) (12)(34)
χ4 3 c a b

would also be a character. Since we only have one row left to fill, this cannot be the case. Thus a = c,
and the last row is of the form

A4 (1) (123) (132) (12)(34)
χ4 3 a a b

Since the irreducible characters form an orthonormal basis, we find that

〈χ4, χ4〉 =
1

12

(
9 + 8a2 + 3b2) = 1

〈χ4, χ1〉 = 3 + 8a+ 3b = 0

When we find solutions to these equations, we find that either a = 0 and b = −1 or a = −6/11 and
b = −5/11. One more inner-product will find the unique solution.

〈χ2, χ4〉 = 3 + 4aω + 4aω2 + 3b

= 3 + 4a(ω + ω2) + 3b

= 3− 4a+ 3b = 0

This shows that the solution is a = 0 and b = −1. Thus we find the character table for A4 is

A4 (1) (123) (132) (12)(34)
χ1 1 1 1 1
χ2 1 ω ω2 1
χ3 1 ω2 ω 1
χ4 3 0 0 -1

8 Character Table for S4

Finally, we will calculate the character table of S4. The order of S4 is 24, and there are five conjugacy
classes: (1), (12), (123), (1234), and (12)(34). Since the only way to write 24 as a sum of five squares is
12 + 12 + 22 + 32 + 32 = 24, we know that the orders of the irreducible representations of S4 are 1, 1, 2,
3, and 3. At this point we can begin filling part of the character table of S4

S4 (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1
χ3 2
χ4 3
χ5 3
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where χ1 is the trivial representation. Earlier in the semester on a homework problem, we showed that
in any permutation group there is an irreducible degree one representation that sends every even element
to 1 and every odd element to −1. Calling this representation χ2, we can add it to our table

S4 (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 2
χ4 3
χ5 3

In the hopes of finding another irreducible representation of S4, we will decompose ρ : S4 → GL(R4),
the natural representation of S4 in R4 (which we know to be reducible), into a direct sum of irreducible
representations, in accordance with Maschke’s Theorem. Recall that

ρ
(
(12)

)
=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 and ρ
(
(124)

)
=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



ρ
(
(1432)

)
=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 and ρ
(
(12)(34)

)
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


Since all of ρ(g), g ∈ S4, are permutation matrices, it is clear that the vector 〈1, 1, 1, 1〉 is unchanged

by any ρ(g). This motivates a change of basis, orchestrated by the matrices

A =


1 1 0 1
1 −1 0 1
1 0 1 −1
1 0 −1 −1

 and A−1 =


1/4 1/4 1/4 1/4
1/2 −1/2 0 0
0 0 1/2 −1/2

1/4 1/4 −1/4 −1/4


In our new basis, our four matrices (one from each non-trivial conjugacy class) become

A−1ρ
(
(12)

)
A =

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)
A−1ρ

(
(124)

)
A =

(
1 0 0 0
0 −1/2 −1/2 −1
0 1/2 1/2 −1
0 1/2 −1/2 0

)

A−1ρ
(
(12)(34)

)
A =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
A−1ρ

(
(1432)

)
A =

(
1 0 0 0
0 −1/2 −1/2 1
0 −1/2 −1/2 −1
0 −1/2 1/2 0

)
and it is immediately clear that ρ can be decomposed into the direct sum of a degree three representation
and a degree one representation; we are primarily interested in the degree three representation. Reading
down the diagonals of our four (one from each conjugacy class) 3×3 submatrices, we can quickly calculate
the character, χ4, of our brand new degree three representation of S4, taking care to remember the trivial
conjugacy class.

(1) (12) (123) (1234) (12)(34)
χ4 3 1 0 -1 -1

Including χ4 in our character table for S4, we now have

S4 (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 2
χ4 3 1 0 -1 -1
χ5 3
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Recall from the χ4 of the character table for A4 that

(1) (123) (132) (12)(34)
χ 3 0 0 -1

To aid us in our endeavors, we will construct a character of S4 induced from χ. Recall that S4 has
five conjugacy classes: (1), (12), (123), (1234), (12)(34), and that A4 is a normal subgroup of S4 with
|S4 : A4| = 2. Our two coset representatives will be (1) and (12). From Definition 3.2, we have

χS4
(
(1)
)

= χ̇
(
(1)−1(1)(1)

)
+ χ̇

(
(12)−1(1)(12)

)
= 6

χS4
(
(12)

)
= χ̇

(
(1)−1(12)(1)

)
+ χ̇

(
(12)−1(12)(12)

)
= 0

χS4
(
(123)

)
= χ̇

(
(1)−1(123)(1)

)
+ χ̇

(
(12)−1(123)(12)

)
= 0

χS4
(
(1234)

)
= χ̇

(
(1)−1(1234)(1)

)
+ χ̇

(
(12)−1(1234)(12)

)
= 0

χS4
(
(12)(34)

)
= χ̇

(
(1)−1(12)(34)(1)

)
+ χ̇

(
(12)−1(12)(34)(12)

)
= −2

And so our new character of S4 induced from χ is

(1) (12) (123) (1234) (12)(34)
χS4 6 0 0 0 -2

It is clear that χS4 is not irreducible, but it may still prove quite helpful. Taking the innner product of
χS4 with χ1 and χ2, we find

〈χS4 , χ1〉 = 〈χS4 , χ2〉 = 0

which means that there are no copies of χ1 or χ2 in χS4 . However, taking the inner product of χS4 with
χ4 reveals

〈χS4 , χ4〉 = 1

And so there is a copy of χ4 in χS4 which we can immediately subtract off, giving

χS4 − χ4 = µ

where µ takes on the values

(1) (12) (123) (1234) (12)(34)
µ 3 -1 0 1 -1

Noting that 〈µ, µ〉 = 1, we conclude that µ is irreducible, and insert it into our character table of S4 as
χ5

S4 (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 2
χ4 3 1 0 -1 -1
χ5 3 -1 0 1 -1

We can also construct another character of S4, this time induced from a representation χ′ of S3 < S4.
Recall that S3 has three conjugacy classes, (1), (12), and (123), and that A3 has four cosets in S4.

S4 = (1)S3 ∪ (14)S3 ∪ (24)S3 ∪ (34)S3

Our four coset representatives will be (1), (14), (24), and (34). We will use a character χ′ from S3 that
we solved for earlier in the semester
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(1) (12) (123)
χ′ 2 0 -1

From Definition 3.2, we have

χ′S4
(
(1)
)

= χ̇
(
(1)−1(1)(1)

)
+ χ̇

(
(12)−1(1)(12)

)
+ χ̇

(
(13)−1(1)(13)

)
+

+ χ̇
(
(14)−1(1)(14)

)
= 8

χ′S4
(
(12)

)
= χ̇

(
(1)−1(12)(1)

)
+ χ̇

(
(12)−1(12)(12)

)
+

+ χ̇
(
(13)−1(12)(13)

)
+ χ̇

(
(14)−1(12)(14)

)
= 0

χ′S4
(
(123)

)
= χ̇

(
(1)−1(123)(1)

)
+ χ̇

(
(12)−1(123)(12)

)
+

+ χ̇
(
(13)−1(123)(13)

)
+ χ̇

(
(14)−1(123)(14)

)
= −1

χ′S4
(
(1234)

)
= χ̇

(
(1)−1(1234)(1)

)
+ χ̇

(
(12)−1(1234)(12)

)
+

+ χ̇
(
(13)−1(1234)(13)

)
+ χ̇

(
(14)−1(1234)(14)

)
= 0

χ′S4
(
(12)(34)

)
= χ̇

(
(1)−1(12)(34)(1)

)
+ χ̇

(
(12)−1(12)(34)(12)

)
+

+ χ̇
(
(13)−1(12)(34)(13)

)
+ χ̇

(
(14)−1(12)(34)(14)

)
= 0

And so our new character of S4 induced from χ′ is

(1) (12) (123) (1234) (12)(34)
χ′S4 8 0 -1 0 0

Taking the inner product of χ′S4 with each of the irreducible characters that we have already solved for
gives

〈χ′S4 , χ1〉 = 〈χ′S4 , χ2〉 = 0

〈χ′S4 , χ4〉 = 〈χ′S4 , χ5〉 = 1

Which motivates the formation of µ′ by subtracting a single copy of χ4 and of χ5 from χ′S4

µ′ = χ′S4 − χ4 − χ5

where µ′ takes on the values

(1) (12) (123) (1234) (12)(34)
µ′ 2 0 -1 0 2

Since 〈µ′, µ′〉 = 1, it is immediately clear that µ′ is irreducible, and we set χ3 = µ and complete our
table for S4.

S4 (1) (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χ2 1 -1 1 -1 1
χ3 2 0 -1 0 2
χ4 3 1 0 -1 -1
χ5 3 -1 0 1 -1
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