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Abstract

In this paper we examine the conditions under which it is possible to do tight frame

surgeries. A surgery involves replacing some vectors with others to form a tight frame.

We show that it is always possible to add unit vectors to a collection of unit vectors

to form a unit tight frame. It is also possible to do a surgery on a unit tight frame,

so as the number of unit vectors removed is less than or equal to the number of unit

vectors replaced. We also find conditions which are necessary for performing tight

frame surgeries which retain the original frame bound, and that these conditions are

sufficient for the case in which one vector is replaced by two.

1 Background and Notation

1.1 Linear Algebra

Recall that a Hilbert space is a complete vector space with an associated inner product. Also
recall that {ei}

n
i=1 ⊂ H is an orthonormal basis if and only if {ei}

n
i=1 is a basis and

〈ei, ej〉 =

{

1 if i = j
0 if i 6= j

for all 1 ≤ i, j ≤ n

We also use topics covered in an advanced Linear Algebra course. Given a linear operator
T from a Hilbert space H to K, there exists a unique linear operator T ∗, the adjoint of T ,
from K to H such that for all x ∈ H and y ∈ K,

〈Tx, y〉 = 〈x, T ∗y〉

If we have T : H 7→ H, a linear operator, then T is positive if it is self-adjoint (T ∗ = T ) and
〈Tx, x〉 ≥ 0 for all x ∈ H.

Orthonormal basis are studied and used widely since they have many useful properties.
Two such properties are:
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Proposition 1.1. Let {ei}
n
i=1 be an orthonormal basis for a Hilbert space H. Given x ∈ H,

the unique coefficents for the linear expansion of x are given by

x =
n
∑

i=1

〈x, ei〉 ei ∀ x ∈ H

This then yeilds another useful equation:

Proposition 1.2. (Parseval’s Identity). Let {ei}
n
i=1 be an orthonormal basis for a Hilbert

space H. Then, for every x ∈ H,

‖x‖2 =
n
∑

i=1

| 〈x, ei〉 |
2

(Note: The proofs of these propositions can be found in several texts, such as [1]).
These properties make orthonormal bases very useful. However, requiring that the vectors

of a basis are orthogonal and normal restricts the number of possible orthonormal bases for
a particular Hilbert space. Are there other spanning sets that satisfy these properties? If
not, are there spanning sets that satisfy similar properties? These questions motivate the
study of frames.

1.2 Frames

In a given Hilbert space H, a set of vectors {xi}
k
i=1 ⊂ H is a frame for H if there exist

positive constants A and B (the lower and upper frame bounds for {xi}
k
i=1, respectively)

such that, for every x ∈ H,

A‖x‖2 ≤
k
∑

i=1

| 〈x, xi〉 |
2 ≤ B‖x‖2

It should be noted that, in a finite-dimensional Hilbert space, a frame is equivalent to a
spanning set. There exist, however, some special types of frames. The rest of this paper is
motivated by the study of tight frames, which are frames where the lower and upper frame
bounds are equal; i.e., for some A > 0,

A‖x‖2 =
k
∑

i=1

| 〈x, xi〉 |
2

There are also some special types of tight frames. A Parseval frame is a tight frame with
frame bound A = 1. Note that a Parseval frame, by definition, satisfies Parseval’s Identity
(Propsition 1.2). Another type of tight frame is a unit tight frame. This is a tight frame
where all the frame vectors are unit vectors.

Example Let H = R2 and let {x1, x2, x3} be the vectors
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Figure 1: The Mercedes-Benz frame
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This collection of vectors is a Parseval frame, and often called the Mercedes-Benz frame.
We can verify that this collection of vectors is a Parseval frame by showing it satisfies
‖x‖2 =

∑k
i=1 | 〈x, xi〉 |

2. Also, we can verify by direct computation that

x = 〈x, x1〉 x1 + 〈x, x2〉 + 〈x, x3〉x3

This is called the reconstruction formula, similar to Proposition 1.2 for orthonormal bases.
We will latter show this holds for all Parseval frames. To do so, we need some more tools.

1.2.1 The Frame Operator

To help us study frames, we introduce the following operators: the analysis operator, the
synthesis operator, and the frame operator.

Definition Let {xi}
k
i=1 ⊂ H. The analysis operator of {xi}

k
i=1, Θ : H 7→ Ck defined by

Θx =









〈x, x1〉
...

〈x, xk〉









=
k
∑

i=1

〈x, xi〉 ei

where {ei}
k
i=1 is the standard orthonormal basis for Ck.
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The analysis operator takes a vector in H and maps it to its coordinates in C
k, with

respect to the frame {xi}
k
i=1.

Definition The adjoint of the analysis operator (Θ∗) is called the synthesis operator.

Let {ei}
k
i=1 be the standard orthonormal basis for H and let {xi}

k
i=1 be a frame in H.

For each y ∈ H and each j, we find

〈y, Θ∗ej〉 = 〈Θy, ej〉by the definition of adjoins

=

〈

k
∑

i=1

〈y, xi〉 ei, ej

〉

= 〈y, xj〉

This implies that Θ∗ej = xj. Thus for each y ∈ H, we have

Θ∗Θy = Θ∗

(

k
∑

i=1

〈y, xi〉 ei

)

=
k
∑

i=1

〈y, xi〉Θ∗ei =
k
∑

i=1

〈y, xi〉 xi

This motivates the definition of our last operator, the frame operator.

Definition The frame operator (S) is defined as Sy = Θ∗Θy =
n
∑

i=1

〈y, xi〉xi, y ∈ H

Note that we can find the frame operator for any collection of vectors, not just frames.
Using the reconstruction formula for tight frames, we find that for a tight frame, S = AI,

where A is the frame bound.

1.2.2 Reconstructive Property of Parseval Frames

Frames are also useful because they have a reconstruction formula, similar to Proposition
1.1. For Parseval frames the reconstruction formula turns out to be the same as Proposition
1.1.

Proposition 1.3 ([2]). {xi}
k
i=1 is a Parseval frame for a Hilbert space H if and only if the

following formula, called the reconstruction formula, holds for all x ∈ H.

x =
k
∑

i=1

〈x, xi〉xi

Proof. Assume that {xi}
k
i=1 satisfies the reconstruction formula. We wish to show ‖x‖2 =

∑k
i=1 | 〈x, xi〉 |

2 (i.e. {xi}
k
i=1 is a Parseval frame).
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‖x‖2 = 〈x, x〉 =

〈

k
∑

i=1

〈x, xi〉xi, x

〉

=
k
∑

i=1

〈〈x, xi〉 xi, x〉

=
k
∑

i=1

〈x, xi〉 〈xi, x〉

=
k
∑

i=1

| 〈x, xi〉 |
2

To prove the converse, assume that {xi}
k
i=1 is a Parseval frame. Note that ‖Θx‖2 =

∑k
i=1 | 〈x, xi〉 |

2 = ‖x‖2 for all x ∈ H. This shows that the analysis operator (Θ) is an
isometry. Since Θ is an isometry, we find that ‖Θx‖ = ‖x‖ and 〈Θx, Θy〉 = 〈x, y〉. Let
{ej}

k
i=1 be an orthonormal basis for H.

x =
n
∑

j=1

〈x, ej〉 ej

=
n
∑

j=1

〈Θx, Θej〉 ej

=
n
∑

j=1

k
∑

i=1

〈x, xi〉 〈ej, xi〉ej

=
k
∑

i=1

〈x, xi〉
n
∑

j=1

〈xi, ej〉 ej

=
k
∑

i=1

〈x, xi〉xi

2 Rank-One Decompositions

This section develops some of the tools we used to find our results in the next section.
While the proof of Proposition 2.1 is challenging, the reader is encouraged to attempt it. A
demonstrative example of the proof is also provided. However, if the reader wishes to read
only the statement of Proposition 2.1 (and skip the proof), the reader will still be able to
under stand the material in the next section.

Recall that a rank-one operator is a map whose range has dimension one. We can write
every rank-one operator as x ⊗ y, for x, y ∈ H, where (x ⊗ y)w = 〈w, y〉x. If x, y are in R

n
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or C
n, the matrix representation of this operator is xy∗:

x ⊗ y = xy∗ =









x1
...

xn









[

ȳ1 · · · ȳn

]

=









x1ȳ1 · · · x1ȳn

...
. . .

...
xnȳ1 · · · xnȳn









We then find that the frame operator S = Θ∗Θ can be expressed as the sum of rank-one
operators:

Sx =
k
∑

i=1

〈x, xi〉x =
k
∑

i=1

(xi ⊗ xi)x

Also note if xi is a unit vector, xi ⊗ xi is a rank-one projection. Thus to show that S is the
frame operator for a unit tight frame all we need to show is that it can be expressed as the
sum of rank-one projections.

Proposition 2.1 ([3]). Let H be a Hilbert space with dimension n. A positive operator T
on H can be written as a sum of k rank-one projections if and only if k ≥ rank(T ) and the
trace of T is equal to k.

Note: In [3] the proof assumes that T is an invertible operator. For our purposes, we can
not assume this. We have modified the proposition and its proof to suit our needs.

Proof. First we will prove the forward direction. Since the trace of a projection is equal to
the dimension of its range, tr(x ⊗ x) = 1. Also, the trace of operators is additive. That
is, tr(A + B) = tr(A) + tr(B). Asumming that T can be written as the sum of k rank-one
projections, we find

tr(T ) = tr(x1⊗x1 +x2⊗x2 + · · ·+xk ⊗xk) = tr(x1⊗x1)+tr(x2⊗x2)+ · · ·+tr(xk ⊗xk) = k

Thus tr(T ) = k. Also, since T is the sum of k rank-one operators, the largest rank T can
have is k. Thus k ≥ rank(T ).

To prove the converse, we will use induction on k to find unit vectors x1, · · · , xk such
that T is the sum of the operators xi ⊗ xi. The base case is when k = n = 1, where T itself
is a rank-one projection and has trace 1. Thus we can write T = x1 ⊗ x1.

The general idea is that we take T , and find a rank-one operator such that T −xk ⊗xk is
still a positive operator. We will then take this operator and find another xk⊗xk to subtract
off. We will repeate this until we get a single rank-one projection. This then gives us how
to express T as the sum of k rank-one projections. The details are as follows:

Since T is a positive (and thus self-adjoint) operator, we can find an orthonormal basis
for T such that T is a diagonal matrix with positive entries a1 ≥ a2 ≥ · · · ≥ an > 0. There
are two possibilites: k > n or k = n. Since, by assumption, k ≥ rank(T ), if k < n we find
rank(T ) < n. Thus the diagonal representation of T includes some zero entries along the
diagonal. We are only interested in the submatrix with positive entries. Thus this submatrix
has dimention rank(T ) = n, and since k ≥ rank(T ) we find k ≥ n. Thus this is really one of
the previous two cases.
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Case 1: k > n. Since tr(T ) = a1 + a2 + · · ·+ an = k > n and a1 ≥ a2 ≥ · · · ≥ an > 0, we
find a1 > 1. Therefore we can let xk = e1, where {ei}

n
i=1 is the standard orthonormal basis

for H. The operator T − (xk ⊗xk) will have diagonal entries a1 − 1, a2, · · · , an ≥ 0, and thus
is still a positive operator with rank n and trace k − 1.

Case 2: k = n. Since tr(T ) = a1 + · · · + an = k = n, we know a1 ≥ 1 and an ≤ 1.
Define the function µn to give the nth largest eigenvalue (counting multiplicity) of any self-
adjoint operator on H. For example, µn(T ) = an. Note that µn(T − (e1 ⊗ e1)) ≥ 0 and
µn(T − (en ⊗ en) ≤ 0. Since µn(T − (x ⊗ x)) is a continuous function with respect to the
vector x, we see by the Intermediate Value Theorem that there exists a unit vector y such
that µn(T − (y ⊗ y)) = 0. Let y = xk. The operator T − (xk ⊗ xk) then has rank n− 1 since
it has 0 as its smallest eigenvalue. It also has trace of k − 1 = n − 1. Now we continue to
work with the matrix with dimension n − 1. We repeat Case 2 till we get n = k = 1, which
is our base case.

To help the reader grasp how this proof works, we provide a demonstrative example.

Example Let

T =







5
2

0 0
0 3

2
0

0 0 1







be a linear operator on R3. Since tr(T ) = 5 and rank(T ) = 3, T can be written as a sum of
5 rank-one projections. Since tr(T ) > rank(T ), we are in Case I, so we must find some x5

such that tr(T − x5) = 4 and rank(T − x5) = 3. Let

x5 =







1
0
0







Then,

T − x5 ⊗ x5 =







3
2

0 0
0 3

2
0

0 0 1







This new operator has trace 4 and rank 3, so we are still in Case I. We repeat the process;
let

x4 =







1
0
0







Now we have

T − x4 ⊗ x4 − x5 ⊗ x5 =







1
2

0 0
0 3

2
0

0 0 1






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This operator has trace 3 and rank 3. Now we are in Case II (and will remain in Case II).
Thus, we need some vector x3 such that the third largest eigenvalue of T −

∑5
i=3 xi ⊗ xi is

zero. Let

x3 =







0
0
1







Now we have

T −
5
∑

i=3

xi ⊗ xi =







1
2

0 0
0 3

2
0

0 0 0







tr(T−
∑5

i=3 xi⊗xi) = rank(T−
∑5

i=3 xi⊗xi) = 2, so we find x2 such that tr(T−
∑5

i=2 xi⊗xi) =
rank(T −

∑5
i=2 xi ⊗ xi) = 1. Let

x2 =







1
2√
3

2

0







We now have

T −
5
∑

i=2

xi ⊗ xi =









1
4

−
√

3
4

0

−
√

3
4

3
4

0
0 0 0









Finally,








1
4

−
√

3
4

0

−
√

3
4

3
4

0
0 0 0









= x1 ⊗ x1

where

x1 =







1
2

−
√

3
2

0







This is our base case, so the recursion stops here. Since ‖xi‖ = 1 for all {xi}
5
i=1, each xi⊗xi is

a rank-one projection. Thus, we can write T =
∑5

i=1 xi⊗xi as a sum of rank-one projections.

Another tool we use in the next section that helps us study the trace of the frame operator
is:

Lemma 2.2. A frame operator S = Θ∗Θ consisting of k unit vectors has trace k.

Proof. The frame operator S can be expressed as
k
∑

i=1

xi ⊗ xi. When ‖xi‖ = 1, xi ⊗ xi is a

projection. Since the trace of a projection is equal to the dimention of the range, the trace

of xi ⊗ xi is 1. Thus, for unit frames, tr(S) = tr

(

k
∑

i=1

xi ⊗ xi

)

=
k
∑

i=1

tr (xi ⊗ xi) =
k
∑

i=1

1 = k.
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3 Surgeries

Definition A (k, l)-surgery removes k vectors from a collection of vectors (possibly a frame)
and replaces them with l vectors. The remaining collection of vectors must be a tight frame.
As long as there exists at least one collection of k vectors that can be removed and at least
one collection of l vectors that can be added the surgery is possible. If no such collection of
vectors exists, then the surgery is impossible.

3.1 Unit Tight Frames

3.1.1 (0, m)-Surgeries

Theorem 3.1. Given a collection of unit vectors {xi}
k
i=1 ⊂ H, a (0, m)-surgery resulting in

a unit tight frame is possible if

• All the vectors added to {xi}
k
i=1 are unit vectors

• m = An − k where A is the frame bound of the resulting frame

• A ≥ Amin where Amin is the largest eigenvalue of the frame operator of {xi}
k
i=1.

Proof. Consider the frame operator, S = Θ∗Θ for the collection {xi}
k
i=1 ∈ H. Since ‖xi‖ = 1,

we can write S as the sum of rank-one projections. We wish to add vectors to the collection
such that

S ′ = S +
m
∑

i=1

yi ⊗ yi (1)

Since we want S ′ to be the frame operator for a unit tight frame, S ′ = AI where A is the
frame bound and ‖yi‖ = 1. We can find a collection of vectors {yi}

m
i=1 that satisfy the

above equation if AI − S has trace m and is a positive operator (by Proposition 2.1). Let
T = AI − S. T is a positive operator when its eigenvalues are non-negaitve. To find its
eigenvalues, we must set det(M − λtI) = 0.

det(T − λtI) = det(AI − S − λtI) = det((A − λt)I − S) = det(λsI − S) = 0

Note that the right hand side is the form of the eignevalues of S. If the eigenvalues of S are
λs, then we find

λs = A − λt

Note that S is symmetric. Thus, by the Spectral Theorem ([1]), S has n real eigenvalues
(counting multiplicites). Since λt = A − λs and λs is always real, we can pick an A such
that λt ≥ 0 for all eigenvalues. Thus there exists some minimum value Amin such that for
all A ≥ Amin, T is a positive operator.

Now, consider trace. Since trace is additive, tr(T ) = tr(AI − S) = Atr(I) − tr(S) =
An − tr(S) = An − k (by Lemma 2.2). We want tr(T ) = m, so we find An − k = m. Thus
k = An−m. There exists some value of A such taht A ≥ Amin (ensuring that T is positive)

and A =
k + m

n
(where m, n ∈ N, ensuring that tr(T ) = m).
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Since AI−S is positive and has trace m, we can express AI−S as the sum of m rank-one
projections by Proposition 2.1. Thus it is always possible to form a tight frame by adding
unit vectors to a collection of unit vectors.

Moreover, we can see from the trace equation that the number of vectors, m, that we
need to add is An − k. Also, as noted earlier, the frame bound A must satisfy A ≥ Amin

and Amin is the largest eigenvalue of S.

Example Consider the Mercedes-Benz Frame in Figure 1. Lets consider possible (0, m)-
surgeries we can perform. Note that in we can not use the Parseval version of the Mercedes-
Benz; we must make it a Unit Tight Frame to apply Theorem 3.1. Let F = {x1, x2, x3}
where

{x1, x2, x3} =

{[

1
0

]

,

[

−1
2

√

3
2

]

,

[

−1
2

−
√

3
2

]}

The largest eigenvalue of the frame operator for F is 3
2
. Thus the number of vectors we

need to add is m = 2A − 3, where A ≥ 3
2
. For our example, lets suppose we wish to add 2

vectors to the Unit Mercedez-Benz. Then we find A = 5
2
.

To find the two additional unit vectors, we need to calculate the rank-one decomposition
of the operator AI − S, where S is the frame operator for F. We find

AI − S =
5

2
I −

[

3
2

0
0 3

2

]

=

[

1 0
0 1

]

= y1 ⊗ y1 + y2 ⊗ y2

where y1 =

[

√
2

2√
2

2

]

and y2 =

[

−
√

2
2√
2

2

]

. Note that there are other possible values for y1 and

y2; this is just one possibilty.

PSfrag replacements x1x1

x2x2

x3x3

y1y2

Figure 2: The Mercedes-Benz, before and after a (0,2) Surgery
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3.1.2 (l, m) Surgeries

Using Theorem 3.1, we can investigate questions about other surgeries on unit tight frames.
First consider a (1, k) surgery on a unit tight frame.

Proposition 3.2. Given a unit tight frame, it is always possible to perform a (1, t) surgery,
where t ≥ 1, and retain a unit tight frame.

Proof. Consider the collection of vectors, {xi}
k−1
i=1 , formed by the unit tight frame with one

vector removed. From Theorem 3.1, we know there exists some Amin such that when A ≥
Amin, we can add An − k vectors to form a tight frame. However, we know we can add
one unit vector to the collection (and get the orriginal tight frame). Thus there exists an
A1 ≥ Amin such that A1n − k = 1. Thus, if we let At = A1 + (t − 1)/n, then Atn − k =
(A1 +(t−1)/n)n−k = A1n−k+(t−1) = 1+(t−1) = t. Since At ≥ Amin and Atn−k = t,
it is always possible to add t ≥ 1 unit vectors to the collection of vectors {xi}

k−1
i=1 and form

a unit tight frame. In other words, it is always possible to do a (1, t) surgery and retain a
unit tight frame.

We now generalize this to (n, m) surgeries.

Theorem 3.3. Given a unit tight frame, it is always possible to perform a (n, m) surgery
and retain a unit tight frame if m ≥ n.

Proof. This proof is analogous to the proof of Proposition 3.2.

3.2 Nonuniform Tight Frames

In the previous section we required that the surgeries created frame vectors with length one,
giving us a unit tight frame. We did not put any restrictions of the frame bound of the
resulting frame. In this section, we do not put any restrictions on the lengths of the vectors;
we require that the frame bound of the original frame and frame resulting from the surgery
be the same.

Theorem 3.4. Let F = {xi}
k
i=1 be a tight frame for Cn with frame bound A.

Consider G = {x1, x2, . . . , xk−l, y1, y2, . . . , ym} ⊂ C
n. A (l, m)-surgery on F, resulting in G,

is a tight frame for Cn with frame bound A only if

k
∑

i=k−l+1

‖xi‖
2 =

m
∑

j=1

‖yj‖
2

and
span{xi}

k
i=k−l+1 = span{yj}

m
j=1
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Proof. If F and G are both C
n tight frames with frame bound A, then both F and G have

frame operator S = AI. So,

AI =
k
∑

i=1

xi ⊗ xi =
k−l
∑

i=1

xi ⊗ xi +
m
∑

j=1

yj ⊗ yj

k
∑

i=k−l+1

xi ⊗ xi =
m
∑

j=1

yj ⊗ yj

k
∑

i=k−l+1

tr(xi ⊗ xi) =
m
∑

j=1

tr(yj ⊗ yj)

k
∑

i=k−l+1

‖xi‖
2 =

m
∑

j=1

‖yj‖
2

as tr(x ⊗ x) = ‖x‖2 for all x ∈ Cn.

To show that span{xi}
k
i=k−l+1 = span{yj}

m
j=1, let

B =
k
∑

i=k−l+1

xi ⊗ xi =
m
∑

j=1

yj ⊗ yj

Let rank(B) = d ≤ n. As B is positive, there exists a basis for Cn with respect to which B
is an n × n diagonal matrix with entries λ1 ≥ λ2 ≥ · · · ≥ λd > λd+1 = λd+2 = · · · = λn = 0
along its diagonal. The ath entry along the diagonal of B is given by

λa =
k
∑

i=k−l+1

x2
i(a) =

m
∑

j=1

y2
j(a)

where xi(a) and yj(a) are the ath entries of xi and yj, respectively. As λa = 0 for d < a ≤ n,
xi(a) = yj(a) = 0 for d < a ≤ n. Thus, dim span{xi}

k
i=k−l+1 ≤ d and dim span{yj}

m
j=1 ≤ d.

Since B is diagonal, there exist {wh}
d
h=1 ⊂ Cn such that {Bwh}

d
h=1 is a linearly independent

set. As {Bwh}
d
h=1 ∈ span{xi}

k
i=k−l+1 and {Bwh}

d
h=1 ∈ span{yj}

m
j=1,

span{xi}
k
i=k−l+1 = span{Bwh}

d
h=1 = span{yj}

m
j=1

Now we consider a more specific case; a (1,2) surgery.

Lemma 3.5. Let F = {xi}
k
i=1 ⊂ Cn be a tight frame with frame bound A, and let G =

{x1, x2, . . . , xk−1, y1, y2} ⊂ Cn be the set resulting from a (1,2)-surgery on F. G is a tight
frame for Cn if and only if y1, y2 ∈ span{xk} and

‖xk‖
2 = ‖y1‖

2 + ‖y2‖
2
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Proof. If ‖xk‖
2 = ‖y1‖

2 + ‖y2‖
2 and y1, y2 ∈ span{xk}, then span{xk} = span{y1, y2}. So,

by the above theorem these are necessary conditions for G to be a tight frame for Cn; thus,
it remains to prove that these are sufficient conditions, i.e. that xk ⊗ xk = y1 ⊗ y1 + y2 ⊗ y2.
Assume that ‖xk‖

2 = ‖y1‖
2 + ‖y2‖

2 and y1, y2 ∈ span{xk}. Then, there exist r1, r2 ∈ R such
that, for m = 1, 2, . . . , n, y1(m) = r1xk(m) and y2(m) = r2xk(m)

‖xk‖
2 = ‖y1‖

2 + ‖y2‖
2

‖xk‖
2 = r2

1‖xk‖
2 + r2

2‖xk‖
2

r2
1 + r2

2 = 1

The (l, h) entry of the matrix form of x ⊗ x is xlxh. Thus, showing that xk(l)xk(h) =
y1(l)y1(h) + y2(l)y2(h) is equivalent to showing that xk ⊗ xk = y1 ⊗ y1 + y2 ⊗ y2.

y1(l)y1(h) + y2(l)y2(h) = r2
1xk(l)xk(h) + r2

2xk(l)xk(h)

= (r2
1 + r2

2)xk(l)xk(h)

= xk(l)xk(h)

Thus xk ⊗ xk = y1 ⊗ y1 + y2 ⊗ y2, and so G is a tight frame for Cn with frame bound A.
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