
CONSORTIUM
The Newsletter of the Consortium for Mathematics and Its Applications     

CONSORTIUM
The Newsletter of the Consortium for Mathematics and Its Applications     

Special Edition: HiMCM Outstanding Papers

Number 86 ISSN 0889-5392 Spring/Summer 2004

Page 2 From the Editor’s Desk: Just Say No (To Filtering)
Page 3 Henry’s Notes: Why Does A Truck So Often Get Stuck in Our Underpass?

Page 5 Historical Notes: The Universality of Mathematics Part 2: The Distant Scene
Page 9 Geometer’s Corner: Getting a Better Angle

Page 13 Math Today: One Egg or Two? Statistics Helps Shed Light on Paleontology
Pull-Out Section: Genetics and A Mathematically Indefensible Historical Movement

HiMCM Outstanding Papers
Page 19 Everybody’s Problems: Spread of an Infectious Disease



A few weeks ago I read an
Internet board posting by 
a woman whose
accomplishments include 

the creation of an award-winning math
Website for children.

She described herself as a very good
math student who came to hate the
subject while taking calculus in college.
After finishing calculus, she decided
she “would NEVER take another math
course.” She added that her son, an
even better math student, developed a
similar attitude while pursuing an
engineering major.

About the legendary question, “Why
do we have to learn this?” she wrote, “I
think we need to take that question
very, very seriously. The question is a
signal that what is going on in our
classrooms is perceived as irrelevant;
and probably pretty dull stuff, too. If
we can’t justify it with any reasons
better than, ‘you’ll need it for the next
class’ or ‘... for the test’ or ‘... in case
you become a grammarian/
mathematician/whatever,’ then we
need to seriously rethink what we are
teaching and why.”

I took her posting quite seriously; in
part because I work for an organization
whose goal it is to make experiences
like those of the writer and her son
uncommon. But the posting also struck
home: like the writer, my daughter
came to dislike math while taking
calculus in college, and like the
writer’s son, my son began to dislike it
while pursuing a technical major.

Many people seem unaware that
mathematics is not taught solely
because it is useful. If utility were the
primary rationale, textbooks and
teacher training programs would
reflect the fact. There are other reasons.
Years ago a mathematics professor told
me, “Other departments use us as a
cleaver.” By that he meant that
requiring a course that is abstract and
irrelevant is a good way to thin the
ranks. A student who did well in a
relevant algebra course after failing
one steeped in abstraction once
observed, “Most people fail at
something because they have no
interest in it.”

“A pump, not a filter” is a slogan heard
throughout years of mathematics

education reform. I believe that the
filtering role’s prominence can be
measured by the extent to which
instruction is bent on coverage and
abstraction at the expense of relevance.
In his book The Arithmetic of Life and
Death, George Shaffner describes such
instruction as having “too much
abstraction, too much symbolism, too
much complexity, too much rigor, and
lessons that are too damned long.”

If we are to reject the role of
educational hit men (or women), then
we must strive to engage our students,
to make our courses relevant, and to
help our students deepen their
conceptual understanding of
mathematics. This issue of Consortium
carries writings of teachers and
students from classrooms in which
these goals are being realized.
Moreover, at COMAP we are working
hard on several new projects designed
to help teachers achieve these goals.
We invite our readers to watch
Consortium and our Website for
announcements and to get involved. ❏
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WHY DOES A
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WHY DOES A
TRUCK SO

OFTEN GET
STUCK IN

OUR
UNDERPASS?HENRY POLLAK

It just doesn’t seem reasonable that trucks should have as much trouble
as they do.After all, in every case I know, the road leading to the
underpass has a sign indicating the clearance. Furthermore, it is natural

to assume that the driver knows the height of the truck and is capable of
comparing the two numbers and making an appropriate decision.And yet,
the problem kept happening. I haven’t kept any records, but I think they
have decreased the clearance indicated on the sign at least twice in recent
years.What’s the matter, does the railroad bridge over the highway settle a
little more every few years, or is the highway department just unable to
hire anyone who can measure the distance between the pavement and
the bottom of the bridge?

Surprisingly, I think it’s neither of these: I think the trouble is that trucks
have gotten longer!



I live in Summit, New Jersey. The name
of the community was not the fanciful
invention of a developer’s ad agency, but
actually fits the geography: As a train on
what used to be called the Delaware,
Lackawanna, and Western RR makes its
way west from the New York area, it has
to go up several hundred feet to get here.
In the old steam days, there was a
watering station at which the engine
could take a drink before continuing to
Morristown and points northwest, and
that may have contributed to the naming
of the town. The road to which I have
been referring goes directly down the
side of the hill, while the track that
crosses it changes elevation gradually
along the edge of the same hill. If we
draw a schematic of the height of the
road, and of the bridge, it looks roughly
as follows:

So as the truck goes down the hill, there
comes a time when the cab and the front
wheels are on the horizontal road surface
under the bridge, while part of the van,
and the rear wheels, are still on the hill.
At this point, the middle of the van,
being supported by the front wheels on
the flat surface under the bridge and by
the rear wheels still on the hillside, is
further off the ground than the front of
the van, and therefore closer to the
bridge. It is indeed conceivable that the
truck may get stuck under the bridge,
even though its height is less than the
height of the bridge. Nature has jacked
up its rear end.

We need to draw a careful picture and
introduce our notation. To simplify the
model a little bit, without in any way
endangering the reality of the problem,
we assume that the junction between the
flat road surface under the bridge and
the sloping surface on the hillside is not
curved and smooth as it is in the real
world, but a corner. This changes the

location of the truck for only a small
portion of the roadway, and not where it
makes any difference.

We see from the figure that y, the
dangerous variable, is given by

y = H sec ϕ + x tan ϕ.

Because of the length of the truck, there
is another relationship between x and ϕ.
We redraw the bottom of the above
figure, between the road surface and the
line joining the bottom of the wheels:

By the Law of Sines in triangle ROF, we
see that

= ,

or

x sin θ = L sin (θ – ϕ).

This equation allows us to think of φas
our independent variable. When we
substitute this for x in the equation for y,
we obtain

y = H sec ϕ + L tan ϕ

= H sec ϕ + L tan ϕ

= H sec ϕ + L sin ϕ – L cot θ .

Before proceeding further with the
analysis, let us get an idea how big this
effect might be.

Suppose that H = 12 feet, L = 40 feet, 
θ = 6°, and ϕ = 3°. Then y, the clearance
needed, would be 13.07 feet instead of 12
feet! That’s a pretty big effect!

To find the worst possible value of ϕ, and
hence x, we should take the above
expression for y, differentiate it with
respect to ϕ, and set the derivative equal
to 0.

= H sec ϕ tan ϕ + L cos ϕ – 

L sin ϕ (2 + tan2 ϕ) cot θ.

When we set this equal to 0, we obtain a
cubic equation for tan φ, namely

tan3ϕ (L cot θ) + tan ϕ (2L cot θ – H) = L. 

Since the angles are small, there is very
little to be gained by attempting various
forms of analytic trickery on this
equation. If ϕ and θ are both small,

tan ϕ ≈ ϕ, cos θ ≈ 1, sin θ ≈ θ.

We multiply the equation by sin θ, and
the equation becomes

ϕ3L + 2ϕL – ϕθH ≈ Lθ.

To first order, then, the ϕ that maximizes
y will be given by ϕ = θ/2. Then

ymax ≈ H + L .

In our example, θ = 6° = π/30 radians,
and L = 40 feet. So the error of assuming
the clearance is H is therefore 40π/120
feet or about 1.05 feet. This matches the
previous computation quite well.

In this problem, the computational
process is perfectly stable. The source of
the instability was the model itself: If you
ignore the grade of the road, you may
easily be off in the needed road clearance
by over a foot! The effect just is not small,
and if you ignore it, long trucks will
indeed get stuck. ❏
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T
he focus of the

story of

mathematics in

western culture

begins essentially with the

Dawn of History (the

appearance of writing) and

extends through the various

Greek eras, the Dark Ages, the

pre-Renaissance, and beyond.

Such a partitioning of history

raises questions about what

was happening elsewhere in

the world in key time

intervals. What mathematical

achievements are thus

identifiable in non-western

culture beginning with the

Dawn of History and

extending through the time

period of the Renaissance?

Many questions arise as such a vast
area of mathematics is explored. In
what manner did the level of
mathematical achievement in both
western and eastern cultures correlate
with plateaus of achievement in other
areas of learning? Here the gamut of
discussion ranges over technology,
architecture, the sciences, and
literature. Unfortunately, time and
space do not permit such an ambitious
undertaking. Only a scattered few can
be considered as the story continues.
The first concerns another look at the
eastern setting, and then, beyond all of
this, a brief glance at the mathematics
of the New World.

Some of the earliest
traces of Japanese
mathematics,
corresponding to
productive time
periods elsewhere in

the world, are lost to historians. There
is nevertheless evidence of a strong
influence by Chinese culture,
especially in the sense of application,
on the mathematics of Korea and
Japan.

One of the more tangible evidences of
this influence is the abacus, though
significant variations on the
remarkable calculating device are
noticeable as one moves from one
setting to another. Considerable
interest was attached to the abacus, in
Japan as elsewhere, because of its
facility in dealing with money, weights,
and measures. Thus its practical or
applied features overrode the allied

concerns of the development of
mathematics as an academic discipline.

Japanese geometry, as is the universal
custom, included a range of
approximations to π. This was
accompanied by basic formulas related
to the circle and to certain polygonal
types.

Little can be asserted with certainty
concerning the state of Japanese
mathematics in antiquity. Moving
beyond the time period of the Dark
Ages in western culture, a more
intensive mathematical assessment
becomes possible. Paralleling the Early
Greek Era, names likewise emerged on
the mathematical scene and thus
allowed a more definitive look at
achievement (as opposed to broad
collective references).

Among the more notable figures of the
early modern era was the
mathematician Seki Kowa (1642–1708).
Born in the same year as Isaac Newton,
Kowa made his primary contributions
in the discipline of algebra. Other areas
of interest and research were those of
the calendar, the solving of higher
degree equations, and the solving of
systems of equations. 

It is in this latter area of achievement
that Seki Kowa’s name is best
remembered. Working independently,
his delvings into the solving of systems
of equations led to the remarkable
method of determinants. Names often
associated with this development are
those of Gabriel Cramer (1704–1752)
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and Gottfried Wilhelm Leibniz
(1646–1716). Yet the discovery of
determinants by Kowa likely occurred
a full decade before that of the Leibniz
discovery in 1693. The conventional
restriction of determinants to solving
systems of linear equations was
expanded upon by Kowa so as to
include extended systems of higher
degree. 

A Modern Notational Look 
at Kowa’s Discovery. 

If , then 

x = = ,

y = = .

Though some notational and symbolic
differences must be noted in the
contrasting of western and eastern
applications of determinant theory,
counterparts are found in Kowa’s work
to the various row and column
properties that are today very familiar
to the mathematician. Property
developments were motivated by the
otherwise tedious techniques of
determinant expansion in the absence
of row and column relationships.
Included were key properties such as

“The value of a determinant is
unchanged if correspondingly
numbered rows and columns are
interchanged.” 

This insightful result led to the
conclusion that all theorems relating to
rows implied an equally valid theorem
should the word “row” be replaced by
the word “column.” Moreover, the
value of a determinant is zero
provided any two of its rows (or of its
columns) are identical. Or, the value of

a determinant is unchanged if
multiples of a given row (or column)
are subtracted from the corresponding
elements of another row (or column). 

Seki Kowa, by profession a teacher of
mathematics, did not venture much
farther than the realm of algebra in his
advancement of Japanese mathematics.
However, those whom he taught and
influenced were indeed to carry on
with his example. As a consequence of
the work of his students, including
Takebe Kenko, these later steps led into
a careful probing of the limit concept
and the appearance in this Oriental
setting of traces of the calculus. Such
traces, though meager and not
including the derivative, corresponded
timewise rather closely with European
enthusiasm over the newly formulated
concepts of differentiation and
integration in the Newton and Leibniz
tradition. 

Archaeological
findings strongly
imply the inhabiting
of the American
continents millennia
before historic times.

Such a pre-historic setting was, among
varied possibilities, one of the
migrating of Asian peoples across a
then-existing Bering land bridge.
Migration southward was likely very
slow. Yet across the many centuries
since this earliest crossing, the North
American and South American
continents were ultimately populated
by widely scattered culture groups. 

The long interval spanned times of
wandering and then an eventual
settling. Ways of living eventually
changed and resulted in such practices
as those of an agrarian and pastoral
kind. Mathematical need was generally
minimal in this long-ago primitive
setting. However, civilizations did
appear, especially those of Central
America, for which records exist in
some degree and thus provide a
picture of early New World

mathematical achievement.
Archaeological findings suggest the
appearance of migrants in this portion
of Central America as early as 6000 B. C.

Among the most obvious of
mathematical needs of the Mayans of
the Yucatan were simple counting, the
calendar, and possibly some
determination of boundary lines
(concerns quite reminiscent of the
Egyptians in the Dawn of History
setting). In such areas of basic
necessity, the historian finds evidence
of numerical and geometric
understanding. This is further
exemplified by an impressive
architecture, much of which remains in
the jungles of Central America to this
day. Mayan civilization was at its
pinnacle in the half millennium
beginning with the fourth century
(Figure 1).

FIGURE 1.

City-states were often formed based on
language and cultural likenesses and
thus gave distinctive markings to what
is called Mayan mathematics. The
more fundamental characteristics of
Mayan mathematics are noted in their
system of numeration, which was
interestingly a vigesimal one and
accordingly based on twenty. Such
symbolism, composed largely of dots
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and bars, made provision for both
place value and zero. In spite of the
unusual number base, the system was
conducive to the performing of the
four fundamental operations and the
extracting of certain roots. Evidence
exists that suggests the actual
performing of these more advanced
operations by the Mayans. 

The Mayan calendar, an impressive
mathematical achievement, surpassed
those of other New World civilizations
of this early time period. In line with
the vigesimal nature of their system of
numeration, the year was partitioned
into eighteen months of twenty days
each and was accompanied by “leap
year” modifications. Its features were
so refined that the prediction of both
solar and lunar eclipses became
possible. Their architecture and
engineering suggest traces of still more
advanced mathematical capability. As
the pre-Columbian era drew to a close,
Mayan culture was in some state of
decay and for many years following
was given little historical
acknowledgment concerning its
technology, way of life, and
mathematical advancements. 

The Aztecs, also of the North American
continent, had developed a form of
writing as well as a system of
numeration. Their system of
numeration, based on twenty, likely
stemmed from the number of one’s
fingers and toes and is thus an
interesting variant on the digital
concept. Such a system was of a
relatively simple nature and was
composed of varying pictures to
denote key number values. Included
was a scheme for the expression and
use of fractional quantities.
Application of these symbols was that
of weights and measures, counting,
astronomy, and a relatively accurate
calendar. All of these areas of
application gave evidence of their
numeration system’s vigesimal nature.
An intermingling of astronomy and
astrology implied a strong religious

influence on Aztec mathematics.
However, the numerological overtones
in various calendar cycles do not
preclude a degree of insight, though
basic, into certain forms of geometry
and trigonometry. 

Unfortunately, records of Aztec
civilization were destroyed in great
measure. It was a loss which resulted
in a disturbing gap in the historical
record. Aztec culture flourished from
the beginning of the thirteenth century
to the times of Spanish conquest by
Hernando Cortez in the early sixteenth
century. 

The Incan civilization of South
America, without a written language,
did produce a system of numeration
(Figure 2). This system, in contrast to
that of the Aztecs and the Mayans, was
based on ten and allowed for simple
counting and the most elementary
forms of arithmetic. Though a
reasonably accurate calendar was
developed, it was oriented more
toward agricultural concerns (the
coming and going of the seasons) and
did not reflect a detailed study of
astronomy. Their engineering feats,
especially of an architectural and
bridge-building nature, suggest a more
advanced knowledge of mathematics
than that of numeration and simple
counting. The most thriving time
period of Incan civilization extended
from the mid-fifteenth century to the
mid-sixteenth century and encompassed
a region of the South American
continent ranging from Ecuador in the
north to Chile in the south.

Early New World culture provides no
remnants of what may be regarded as
famous problems in mathematics.
However, it does provide a piece in a
worldwide puzzle that would
otherwise be glaringly incomplete. The
universal nature of mathematical
interests and appropriate application
are suggested, even here, in a
geographical setting far removed from
the mainstream of classical

mathematical activity that has
generally been the focus of the
conventional historical look.
Unfortunately, such a New World piece
of the puzzle, because of the
meagerness of records, still leaves
unanswered a vast assortment of
tantalizing questions. 

FIGURE 2.

The intermingling of
mathematical ideas
dates from the earliest
of time periods.
Including commercial
contacts involving

Egypt, Crete, and Greece in the early
Thalassic Age, or the spreading of
Greek culture through the extensive
military conquests of Alexander the
Great, mathematical influences were
overtly and subtly involved. The
record gives abundant evidence of
such periods of peaceful and violent
interaction. Still at other times and
places in history, a high degree of
isolation dominated the scene. 

Because of navigational contacts,
Greek culture was significantly
influenced by earlier civilizations of
nearby lands which bordered on the
Mediterranean as well as those
somewhat to the east. Conjectures
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concerning discoveries in remotest
antiquity of geometric relationships
and their eventual assimilation into the
mathematics of neighboring nations
have long fascinated the curious as the
historical record is examined. Not all
discoveries have arisen independently,
and thus raise the question of how
other culture groups happened to
become knowledgeable of such facts.
The story is sometimes obscured by
our inability to decipher long-lost
languages. Many such encounters do
not have the same positive outcome as
that of the Rosetta Stone discovery. 

As the varied cultures are studied,
virtually without fail some form of
numeration is noted. These
numeration systems, vastly different in
symbols and scheme, were often
replaced by superior systems as
awareness of the more sophisticated
systems filtered through. The story of
the transmission of Hindu-Arabic
numerals into western culture is one of
the most significant happenings of the
pre-Renaissance. 

Some forms of mathematical discovery
do not have this feature of diverse
finding or development. As noted
before, early abstract mathematics
makes virtually no appearance
anywhere in the world except in the
classical Greek environment. Hence, an
appeal to other civilizations and
culture groups (as in China or the
Orient in general) sheds little light on
the subject of how a form of
demonstrative geometry is born. 

Envision for a moment an alien visitor,
looking for the first time at the state of
earthly mathematical achievement.
Think too in terms of the advanced
mathematical awareness such an
observer might possess. Would it not
prove intriguing to witness the alien
reaction to an assessment of the many
centuries of worldwide attachment to
Euclid’s fifth postulate? This ancient,

wordy pronouncement has a
uniqueness that arouses curiosity. One
would accordingly have to wonder
how the notions of the point, the line,
the plane, and of space itself, arose in
the alien’s far-off setting. Thus
employing the Greek word for “world”
instead of the inappropriate “geo” for
“earth,” the question becomes one of
“kosomonometry” and its evolution on
a distant but enlightened planet. Such
reflections go beyond the bounds of
the conventional question of the
earthly origin and development of
mathematical concepts. Still, the
question proves insightful in the
broader, more fanciful setting. 

Famous problems of varying kinds,
affording a meaningful perspective of
history, often appear in the same
unique manner of postulational
geometry. These include, among other
things, one of the earliest of such
problem types, namely, the three
famous problems of antiquity. Still
others, as in the solving of Diophantine
equations, suggest variants on the
theorem of Fermat in scattered places.
Even as traces of famous problems can
often be found in diverse cultures, the
matter of inductive speculation as
opposed to rigorous proof must also be
taken into account. How might, for
example, an early disposition of the
“Pythagorean Theorem” differ as the
historical scene shifts from Egypt to
China to Greece?

The picture, across the millennia, is
paradoxically one of great contrast and
similarity. However, the later years of
the modern era are decidedly less
fragmented in this respect. The
mathematical community of the early
twenty-first century is a worldwide
community and does not present a
picture of the isolation and accidental
intermingling of ideas that so
distinguished the earlier years. ❏
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S
ince Consortium now

contains lots of

interesting material

on modeling, it is

time to close the

Modeler’s Corner and start a new

column.As some of you may have

noticed, many of my columns

have had a distinctive geometric

flavor so it should come as no

surprise that the new column will

be called Geometer’s Corner.The

goal of the column is to provide

all of you who teach, geometry

material that deals with topics

that are not traditionally taught

but that may have a place in the

geometry classroom of the 21st

century. I welcome any and all

suggestions for future columns.

I can be reached at

jchoate@groton.org.

This month’s column deals with one of
my favorite problems. I originally
found it in Heinrich Dorrie’s 100 Great
Problems in Elementary Mathematics [1],
a wonderful book now out in
paperback that I highly recommend.
The problem is often referred to as the
Problem of Regiomontanus and is
reputed to be the first max-min
problem of the modern age.

“At what point on the ground
does a perpendicularly
suspended rod appear largest
[i.e., subtends the greatest visual
angle]? It has been claimed that
this was the first extreme
problem in the history of
mathematics since antiquity.”i

A version of this problem is found in
many calculus textbooks. The
following version comes from Anton’s
Calculus [2].

The lower edge of a painting, 10
ft. in height, is 2 feet above an
observer’s eye level. Assuming
that the best view is obtained
when the angle subtended at the
observer’s eye by the painting is
maximum, how far from the
wall should the observer
stand?ii

I use a problem similar to this in my
geometry class. I first introduce it
when we begin to study right angle
trig. All my students have TI-89
graphing calculators and they have
learned how to use the inverse trig
functions to find angles. To start we
assume that the painting is 6 feet tall
and is hanging in such a way that the
bottom of the picture is 4 feet above an
observer’s eye level, which is 5 feet
above the ground.

FIGURE 1. REGIOMONTANUS’S VIEWING

ANGLE PROBLEM.

Figure 1 illustrates the problem. The
hanging picture is represented by
segment TB, and the viewing angle is
represented by ∠ BPT. PE represents
the distance from the wall. At this
point, you can have students calculate
∠ BPT = ∠ EPT – ∠ EPB for different
values of PE by using the formulas

∠ EPT = tan–1 and ∠ EPB = tan–1 .

If they put their results in table form
they should get a table that looks like
the one shown in Table 1.

4
PE

10
PE
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TABLE 1. VALUES FOR ∠ BPT.

Once they have filled in the table have
them plot the graph of ∠ BPT in terms
of PE. The graph gives some
interesting information about the
problem.

FIGURE 2. THE GRAPH OF ∠ BPT AS A

FUNCTION OF PE.

Hopefully they will see that the graph
shows that there might be a maximum
value for ∠ BPT. Have them find this
value to the nearest 1/100th using their
calculators and a guess-and-check
method of their choosing.

If you have access to a geometric
construction program such as Cabri or
Geometer’s Sketchpad, you could use
it to find another approximation by
creating a sketch like the one in Figure 1
with P being a movable point. Once 

you have an approximation, ask
students to convince themselves that
for any value of the viewing angle less
then the maximum there are two
places where the viewer could stand
and achieve that angle. They can argue
this both by using the graph they
created earlier or by using the sketch
they created with the movable point P.
For example, in Table 1 it shows that
∠ BPT = 24.57772º for EP = 5 and 
EP = 8. At this point, they haven’t
found the exact solution but they do
know that (a) one exists and (b) for any
value less than the maximum there are
two places the viewer can stand.

There are two non-calculus ways to
find the exact solution, depending on
what course you are teaching. In a
geometry course I’d return to the
problem when you begin a study of
circles. Let’s come back to the circles
solution later. In a trig course you can
continue with an algebraic solution
such as the one given in Eli Maor’s
wonderful book Trigonometric Delights
[3], which, thanks to the generosity of
the good people at the Princeton Press,
is available for free on the Internet.
Here is Maor’s solutioniii, which makes
use of the fact that the arithmetic mean
of two numbers is always greater than
or equal to the geometric mean. This 
means that for all u, v, >0, ≥ .
Maor notes that to find the max value
for the viewing angle ∠ BPT one can
look for the max value of tan(∠ BPT) or
the minimum value of cot(∠ BPT). He
wisely chooses for algebraic reasons to
go with minimizing cot(∠ BPT).

Here is his solution.

In what follows b = TE, a = BE, 
β = ∠ EPT, α = ∠ EPB, θ = ∠ BPT = 
β – α, and x = PE (see Figure 1).

Now, cot(β) = , cot(α) = , and 

cot(θ) = cot(β – α).

Using the formula for cot(β – α) and
making some substitutions, you get 

cot(β – α) = 

Here is where the relationship between
the arithmetic and geometric mean of
two numbers comes in.

Let u = and v = . Since 

≥ , we have

+ ≥ 2 = 

2 .

There is equality when u = v or when 

= . This implies that x2 = ab

and finally that x = .

So the exact solution to our original
problem is that the person would have
to stand feet to get the maximum
viewing angle. Neat—no calculus—
just some trig and some clever algebra.

If you are introducing the problem in a
geometry class, here is a geometric
solution that requires some knowledge
about inscribed angles in a circle and
intersecting secant lines. Earlier, we
saw that given an angle less than the
maximum angle one could always find
two points, call them P1 and P2 such
that ∠ BP1T = ∠ BP2T. This is illustrated
in Figure 3.

FIGURE 3. ∠ BP1T = ∠ BP2T
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There is something special about
points B, T, P1 and P2 that will jump
out at you if you think of the segment
BT as being a chord of a circle and
∠ BP1T and ∠ BP2T as being inscribed
angles in a circle. All four points lie on
a circle! If P is the point where the
maximum occurs, then the circle
through B and T will intercept the eye
level line in only one place and hence it
must be tangent at that point. Now the
picture looks like Figure 4.

FIGURE 4. THE EXACT SOLUTION TO THE

VIEWING ANGLE PROBLEM.

There is a theorem that relates secant
lines to tangent lines, which says in
this case that TE · BE = EP2. In our
example, TE = 10, BE = 4 so EP = ,
the same answer we got analytically.

Let’s go a bit farther with the problem
and come up with a way to construct
the circle tangent to the eye level line
using only Euclidian tools. Here is one
way of doing it.

Locate a point Q on line BE such that
QE = BE and Q-E-B.

Construct the midpoint M of segment
TQ.

Construct the circle with center M that
passes through point T.

Construct a perpendicular to TQ
through E and label its intersections
with circle M as S1 and S2.

S1 is the desired point of tangency.

Construct the circle C2 through T, B
and S1.

Note that ∆QS1T is a right triangle and
S1E is the altitude to its hypotenuse.
Since the altitude to the hypotenuse is
the geometric mean of the two
segments into which it divides the
hypotenuse you can show that 
S1E2 = QE · TE. S1 is the desired point
of tangency.

FIGURE 5. GEOMETRIC CONSTRUCTION OF

MAXIMUM VIEWING ANGLE.

An interesting variation to the Art
Gallery Problem is finding the best
place to sit in a movie theatre with
raked seating. I found the following
version on the Grand Valley State
University Mathematics Department
Website located at
www.gvsu.edu/math/calculus/M201/
pdf/movie.pdf.

A movie theatre has a screen that is
positioned at 10 feet off the floor and is
25 feet high. The first row of seats is
placed 9 feet from the screen and the
rows are 3 feet apart. The floor of the
seating area is inclined at an angle of
20 degrees above the horizontal.
Suppose your eyes are 4 feet above the
floor and you want to locate a seat that
gives you the maximum viewing
angle. How far up the inclined floor
should you locate the seat?iv

In the Figure 6, TB = 25, BG = 10, 
GA = 9, ∠ DAE = 20° and CA = 4 and
line PH is parallel to line AD. This
problem has a similar constructive
solution to that of the art gallery. You
need to find a point P such that the

circle through T, B, and P is tangent to
line PH. In order to do this, you need
to construct the point H, which is
where the line that determines your
eye level intersects the wall. Once you
have that point located you need to
find the length of HP, the geometric
mean of TH and BH. The length of
segment CP is how far you should
place your seat up the raked floor.

Using the law of cosines, you can find
an expression for ∠ BPT. Start with a
coordinate system with origin at G. In
this system T = (0, 35), B = (0, 10), and
A = (9, 0). Since line AD has slope
tan(20°) and goes through the point 
(9, 0), its equation in point-slope form
is y = tan(20°)(x – 9). Line PH is parallel
to line AD and is 4 units above it so its
equation is y – 4 = tan(20°)(x – 9).
Therefore, any point on line PH has
coordinates (x, tan(20°)x – 9tan(20°) + 4 ).

Expressing BP and TP in terms of x
gives you

BP= 

TP = 

∠ BPT can now be found using the Law
of Cosines.

∠ BPT = cos–1

A maximum value for this function can
now be found using a graphing
calculator with a maximum function or
by calculus. Once you have the 

BT TP
BT PT

2 2 625
2
+ −

⋅






x x2
2

35 20 9 20 4+ − ( ) − ( ) +( )( )tan tano o

x x2
2

10 20 9 20 4+ − ( ) − ( ) +( )( )tan tano o
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coordinates of P, the length AM can be
found, and to the nearest hundredth it
is 8.25. Another solution using calculus
can be found at
www.gvsu.edu/math/calculus/M201/
pdf/movie.pdf. This solution is
derived from UMAP Module 729,
“Calculus in a Movie Theatre.”

It is interesting that both variations of
Regiomontanus’s problem can be
solved exactly by construction. Both
require you to do the following:

Given two points A and B and a line
that does not contain A or B and that
does not intersect segment AB,
construct the circle that passes through
A and B which is tangent to the given
line.

I leave it to the interested reader to
develop a Cabri or Geometer’s
Sketchpad solution to the movie
theatre problem using a construction
similar to the one used to find the
solution to the Art Gallery problem.

Regiomontanus’s original problem
about the suspended rod can also be
solved using the following construction:

Given two points A and B and a circle
with center C such that A and B are
external to C; A, B and C are collinear
and A-B-C, construct the circle through
A and B that is tangent to circle C.

Here is a construction using
Geometer’s SketchPad. In Figure 7,
circle P is tangent to circle C at Q. Q, C,
and P are collinear, and CP extended
meets circle P at R. Since secants AB
and QR intersect at C, AC · BC = RC ·
QC. AC, BC, and CQ are known. If we
let CQ = r and QP = s, then RQ = 2s,
and RC = 2s + r. Therefore,

AC · BC = (2s + r)r

= 2sr + r2

and

s = 

FIGURE 7. SOLUTION OF REGIOMOTANUS’S
ORIGINAL PROBLEM.

Here is how to do the construction
shown in Figure 7.

Step 1. Measure AC, BC, and CD = r,
the radius of the given circle.

Step 2. Use the SketchPad’s calculator 

to calculate s = 

Step 3. With C as center dilate point D
by a scale factor of s/r, creating a point
W. Construct segment CW. Note that
CW has length s.

Step 4. With A as center and CW as
radius construct circle A. With B as
center and CW as radius construct
circle B. Label one of the points of
intersection of the two circles P.

Step 5. Construct a circle with P as
center that contains point A. This is the
circle tangent to circle C.

Step 6. Label the intersection of circle P
with circle C, Q.

∠ AZB is the maximum angle!

If you would like a challenge, try the
following.

Given a circle C and a line l that does
not intersect C, let A and B be any two
points on l. Find the point P on circle C
such that ∠ APB is a maximum.

If you come up with a solution please
send it to me and I’ll publish it in the
next Geometer’s Corner. ❏
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Send solutions to old problems and any new
ideas to the Geometer's Corner editor: 

Jonathan Choate, Groton School, 
Box 991, Groton, MA 01450.
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O ne of the goals of paleontology
is to connect what we learn
through fossil records of extinct

animals’ biology to the biology of
contemporary animals. A product of
such work is the construction of
phylogenetic trees that trace animal
morphology and behavior across
many generations and species of
animals. The detail in which the most
recent branches in such trees can be
articulated often overwhelms the
detail possible for the oldest branches.
In contrast to biologists who enjoy
easy access to large numbers of living
members of the species they study,
paleontologists are at the mercy of
what is originally recorded in the fossil
record and what remains intact long
enough to surface for examination.
Therefore, the excitement generated by
the recent finding of just one very well
preserved nest of a small dinosaur in
Montana, Troodon formosus, is
understandable. Equally
understandable is the paleontologists’
desire to extract as much information
from the nest as possible. As we will
see, despite their rather paltry n value
of 1, their quest led mathematicians to
one of the limits of contemporary
mathematics.
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Troodon, Reptile, 
and Avian Biology

Although modern day birds and
reptiles are very different species, it is
quite likely that they share common
ancestors. Anyone who has seen
Jurassic Park probably remembers the
closing scene of a pelican flying across
the ocean’s surface, suggesting that
modern descendants of extinct
dinosaurs are alive and doing quite
well. The tracing of contemporary
animals to their ancient ancestors
makes use of every bit of evidence
available in living and fossilized
samples.

Modern day birds form and lay their
eggs one at a time, with some time
passing (perhaps a day or so) between
the laying of successive eggs
belonging to the same clutch. Reptiles
lay their eggs all at once in a large
depositing of a complete clutch. Avian
ancestors also laid their eggs
sequentially, and there is some reason
to suspect that some of these ancestors
had two ovaries functioning in tandem
rather than the single ovary found in
modern birds. Animals with two
ovaries functioning in tandem will lay
one pair of eggs at a time followed by
a short interval before laying another
pair. In trying to trace development of
modern species, traits such as nesting
behavior, egg formation, method of
egg deposition, and number of ovaries
play crucial roles.

STATISTICS HELPS SHED LIGHT
ON PALEONTOLOGY MYSTERY

ONE
EGG OR

TW ?

As you might have guessed given the
find of an intact Troodon nest—with
eggs in place—the egg laying
dynamics of Troodon formosus gained
prominence with paleontologists
trying to situate Troodons among the
ancestry of modern birds and reptiles.
Figure 1 shows a photo of the nest and
its eggs as fossilized in Montana about
75 million years ago. It contains 22
eggs.

FIGURE 1. PHOTOGRAPH OF A FOSSILIZED

TROODON NEST FOUND IN MONTANA. THE

DARKER OBLONG SHAPES ARE EGGS. CAN

YOU FIND 22 OF THEM? PHOTO COUTESY

OF MUSEUM OF THE ROCKIES.

The Paleontological Question

Without going into more of the biology
of avian and reptile reproduction, we
can focus on the question that led the
paleontologists to confer with
statisticians. Consider for a moment
the four computer generated Troodon
nests in Figure 2. Which egg
arrangements do you think were
produced by an animal with two
ovaries operating in tandem, and
which egg arrangements do you think
were laid by an animal laying an entire
clutch all at once?
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Unfortunately the fossilized Toodon
nest found in Montana was not as clear
an example of an egg arrangement
produced by a paired mechanism as is
the simulated nest in the lower left
corner of Figure 2. When confronted
with an egg arrangement whose origin
is uncertain, it is natural to turn to
statistics to assign a degree of
confidence to the question of whether
the nest was produced via a paired egg
laying mechanism or by a more
random approach.

It is common for mathematics teachers
and students, when posed with the
problem of discriminating between
paired and non-paired laying
mechanisms, to quickly focus on a
comparison of intra-pair distances with
inter-pair separations. The intuition is
that if the average of the intra-pair

distances is small compared to the
average of the inter-pair distances,
then a paired mechanism was probably
at work. Similarly, if the average of the
intra-pair distances is comparable to
the average of the inter-pair distances,
then a paired mechanism was likely
not present.

But this plan is well suited only when
the likely pairs are easily identified. In
some of the simulated nests in Figure
2, we would be hard pressed to pair
the eggs up with any confidence at all.
This inability, however, does not mean
that the eggs were not laid in pairs.
There is a region of overlap in the
possible distributions of egg
arrangements where nests produced
by a paired mechanism and nests
produced by a more random process
look very similar.

In the in-between scenarios, where it is
difficult to decide if a paired or
random approach was used, we seem
in need of a foothold or something to
use as a basis of comparison. The
statisticians provided just such a basis.

The Statistical Answer

We should first state some of the
assumptions we are making before
delving into the mathematical model
used to answer the paleontologists’
question. We are assuming that the
eggs were not significantly displaced
from their initial resting spots after
being laid, we are assuming that we
can treat the eggs as points in a plane
rather than paying attention to the full
three-dimensional aspect of the
problem (in fact the Troodon nest was

14

FIGURE 2.
FOUR COMPUTER-
GENERATED NESTS AND

EGG ARRANGEMENTS.
WHICH WERE GENERATED

BY A PAIRED EGG

MECHANISM, AND WHICH

WERE GENERATED BY A

COMPLETELY RANDOM

MECHANISM?
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very flat and no eggs were piled on
top of one another), and when we
speak of a paired versus random
mechanism we are not saying that
there wasn’t a random aspect present
in the paired mechanism. In regard to
this last assumption, the key idea is
that despite the random locations of
the pairs themselves, the paired nature
(the intra-pair distances) was
constrained by the animal not moving
much between depositing the two
eggs that belong to a pair.

So, where do we begin to assign a level
of confidence to the hypothesis that
the Toodon eggs were laid via a paired
mechanism? Although paleontologists
might be constrained by a very limited
number of fossilized nests,
mathematicians face no such
constraints. In the abstract world of
mathematics it is often easy to
generate a hundred, a hundred
thousand, or a hundred million
simulated nests. With large numbers
like these, we gain statistical power
and confidence not possible when
studying only one physical nest.

The next key simplifying assumption
made by the statisticians was to
basically ignore the problem of
measuring the inter-pair distances.
They sought only to compare the
observed intra-pair distances in the
fossil nest with an appropriate
statistical distribution of intra-pair
distances for simulated nests. But this
left them with the problem of figuring
out how to pair up the eggs in
distributions where the pairs are not
obvious. How could this be done?

The statisticians defined a new
measurement associated with any
distribution of points in the plane
called the minimum paired distance,
or MPD. Consider Figure 3 which
shows all possible pairings of a
simulated nest of 6 eggs. The MPD for
this distribution of eggs is the
minimum sum (or one of the minimal
sums in the event of two or more
equivalent minima) of the intra-pair
distances found across all 15 possible
pairings.

FIGURE 3. ALL 15 POSSIBLE WAYS OF PAIRING A SIMULATED NEST OF 6 EGGS. THE PAIRING

THAT RESULTS IN THE SMALLEST SUM OF INTRA-PAIR DISTANCES IS THE MINIMUM PAIRING

AND ITS ASSOCIATED SUM IS THE MINIMUM PAIRED DISTANCE, OR MPD.

15
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Given the definition of MPD, we are
now ready to calculate the distribution
of MPDs for many simulated nests of
22 eggs. In generating these simulated
nests, an important issue of scale must
be addressed. The rough size and
shape of Troodon nests, and the degree
to which the eggs are distributed
throughout the interior of the nests,
are parameters that have to be set
based on the observed nest. Once these
are determined, the next step is to
generate many simulated nests. The
vital factor in generating these nests is
that the generation be done
randomly—with no pairing
mechanism at work. This way we can
compare the MPD for the fossil nest
with the distribution of MPDs for the
simulated nests and determine how
significantly the fossil nest’s MPD
differs from the mean of the simulated
nests’ mean MPD.

Pause. Remember that when we go to
write a program to generate the
simulated nests and calculate their
MPDs, we will have to first find the
pairing of the randomly located 22
eggs that yields the MPD, and we will
have to repeat this task for each nest.
For 6 eggs there are 15 different
pairings to consider. How many
possible pairings are there for 22 eggs?

Combinatorial Detour

The question of how many pairings
are possible given an even number of
objects, n, is a nice challenge for
students studying permutations and
combinations. Both recursive and
closed form expressions are possible
and they seem to be generated equally
depending only on a student’s
preferred way of thinking. The
problem is challenging because after
just the first couple of cases, the
number of pairings becomes large
quickly. For two objects, there is only
one possible pairing, and for four
objects there are three distinct pairings.
As Figure 3 shows, there are 15 distinct
pairings of six objects, and with the
addition of just two more objects the

number of pairings of eight objects
jumps to 105. Caution: In what follows
it will be important to keep straight the
difference between a pair and a
pairing: Each of the three possible
pairings of four objects has two pairs;
similarly, each of the 105 pairings of
eight objects consists of four pairs.

Figure 4 shows how to build the group
of pairings of six objects recursively
out of the group of pairings of four
objects. Remember that order within a
pair or within a pairing doesn’t matter.

If we let Pn represent the number of
pairings of n (where n is any positive

Step 0. Given the three pairings of four objects:

AB CD

AC BD

AD BC

Step 1. Append to each pairing, the new pair EF.

AB CD EF

AC BD EF

AD BC EF

Step 2. Working in turn with each of these three new pairings, sequentially
exchange one member of each pair with each of the members of the new pair
to generate new pairings.

AB CD EF → AE CD BF exchanging B and E

→ AF CD EB exchanging B and F

→ AB CE DF exchanging D and E

→ AB CF ED exchanging D and F

AC BD EF → AE BD CF exchanging C and E

→ AF BD EC exchanging C and F

→ AC BE DF exchanging D and E

→ AC BF ED exchanging D and F

AD BC EF → AE BC DF exchanging D and E

→ AF BC ED exchanging D and F

→ AD BE CF exchanging C and E

→ AD BF EC exchanging C and F

FIGURE 4. GENERATING THE 15 PAIRINGS OF

6 OBJECTS OUT OF THE 3 PAIRINGS OF 4 OBJECTS.
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even integer) objects we can develop a
recursive formula for Pn by counting
the numbers of exchanges made for
each of the pairings in Pn – 2. Consider 

any n, then there are pairs in 

each pairing of the n – 2 objects
comprising the Pn – 2 pairings.

For example, if n = 6, then there are 

= 2 pairs in each of the previous 

pairings of 6 – 2 = 4 objects. For each of
these pairs in just one pairing selected
from the Pn – 2 pairings, we need to
make two exchanges, once with each
member of the new pair involved in
moving from Pn – 2 pairings to Pn
pairings. So, in step 2 in Figure 4, when
we were working with the AD BC EF
pairing, we had to make two
exchanges in each AD and BC
involving E and then F. This means we 

made 2 · new pairs or simply 

n – 2 new pairs. But we also made the
very first new pair based on the
previous AD BC pairing by appending 

EF to it. So in all we made 2 · + 1

or (n – 1) new pairs out of just one of
the previous (n = 4) pairings. We repeat
this process with each of the previous
pairings for a total of Pn – 2 times.
Hence, Pn = (n – 1) · Pn – 2. Knowing
that P4 = 3, for n = 6, we get P6 = 5 · P4
or P6 = 15. Table 1 shows the first
several values of Pn.

It is also possible to derive a closed
form expression for Pn by considering
first all permutations of n objects and
then removing the duplicate pairings
due to intra-pair ordering and to inter-
pair orderings.

Consider n = 6 objects that can be
arranged in n! ways in n boxes; and
then consider any one of these pairings
(e.g., AE BD CF). See Figure 5.

Each of the pairs within any given 

pairing could be in any of two possible
orders (e.g., AE or EA), hence we must
reduce the n! permutations by a factor 
of 2n/2. Additionally, the pairs 

themselves could be in any of ! 

orders. Applying both of these factors
to n! we get:

Pn = 

May I Have the 
Envelope Please?

Returning to the question of whether
Troodon had one or two ovaries, we
were getting ready to run a computer
program to generate lots of simulated
nests and calculate the MPD for each
nest. We now know that for each
simulated nest, we will have to
calculate the sum of the intra-pair
distances for each of the 13,749,310,575
possible pairings of 22 eggs! If we want
to generate a distribution of MPDs for
22 eggs that will allow for a high level
of confidence we will want to look at
thousands of simulated nests. The
statisticians in Montana decided to 
use 1000 nests in part because of the

time required to compute the needed
1.37 x 1013 intra-pair distance sums. In
fact, they were able to avoid examining
some of the pairings least likely to yield
the MPD, but the problem remained
computationally very intensive.

The graphs in Figure 6 show the
development of the increasingly
normal distribution of MPDs for
simulated nests with 6 eggs.

After the statisticians generated their
1000 simulated nests of 22 randomly
distributed eggs and then compared
the MPD of the fossilized nest
(requiring another perusal of
13,749,310,575 possible pairings) to this
distribution, they found it was located
far to the left of the distribution. In
fact, the MPD of the fossilized Troodon
nest was smaller than 99% of the
simulated MPDs. On this basis, the
paleontologists concluded with 99%
certainty that the Troodon eggs were
laid in pairs lending support to the
conjecture that they had two ovaries
which links them with the ancestors of
modern day birds.

Remaining Mathematical
Questions and Challenges

In past Math Today columns we’ve
looked at problems that become
analytically and or computationally
too challenging to solve. In this case,
we saw how statisticians were able to
answer a significant question that was
at the border of what is
computationally feasible. They were
fortunate that the fossilized nest
contained only 22 eggs. They might
still be waiting for their computer
programs to finish running if the
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FIGURE 5. DERIVING Pn FROM THE n! PERMUTATIONS OF n OBJECTS WHERE n = 6 BY

TAKING INTO CONSIDERATION DIFFERENCES IN INTRA-PAIR AND INTER-PAIR ORDERINGS

THAT DO NOT CHANGE THE OVERALL NATURE OF ANY ONE PAIRING.

TABLE 1.
THE NUMBER

OF DISTINCT

PAIRINGS OF

n OBJECTS.

n Pn

2 1

4 3

6 15

8 105

10 945

12 10395

14 135135

16 2027025

18 334459425

20 654729075

22 13749310575
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paleontologists had brought them a
nest of 30 eggs. To find the MPD for
just one nest of 30 eggs would require
looking at 6,190,283,353,629,375
distinct pairings, or 450,225 times as
many pairings as are possible among
22 eggs.

Is there a better way? In particular is
there a way to reduce the number of
pairings we must search through to
find the pairing that yields the MPD?
Turn your students loose and see what
they discover. ❏
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Mathematical modeling is an important tool in both governmental
policy decision-making and in industrial planning. In mathematical
modeling, we develop a function, a graph, an equation, or a
simulation based on assumptions about a situation. The results often

give insight into the situation. The expense of making a mathematical model is
usually significantly less than making a prototype. Even more importantly, a
math model can sometimes help us avoid making decisions that may have
disastrous effects on humans and our environment.

In this article, we are going to develop and analyze some models related to
population genetics. In particular, we are going to study how the genetic
makeup of a population changes over time as a result of natural and man-
made influences.

We begin by developing models related to the failed “eugenics movement” of
the late ninteenth and early twentieth century. This worldwide movement
promoted forced sterilization of individuals deemed to have harmful genetic
traits. The movement particularly targeted mental retardation, with the goal of
eliminating mental retardation. 

Pairs of genes determine many traits, one gene inherited from each parent. 
The genes come in different forms, called alleles. The particular pair of alleles
inherited from the parents determines the trait exhibited by the child. For
simplicity, we assume there are just two alleles for a certain gene; we will
designate them A and B. 

The possible genotypes are AA, AB, BA, and BB, where the first allele is from
the mother and the second allele is from the father. We will assume that A is a
dominant allele and B is recessive, so that the AA, AB, and BA individuals
exhibit the trait determined by the A-allele and the BB individuals exhibit the
trait determined by the B-allele.

Let’s assume that the fraction of alleles that are A and B among the parents is p
and q, respectively. Since all alleles are of one type or the other, then p + q = 1.
We assume that the genetic makeup of males and females are the same, so that
the probability of a child getting an A-allele from either parent is p.

You Try It #1

Assume that p = 2/3 and q = 1/3. Simulate the births of a population of 36
children by rolling a pair of dice 36 times. Mark one die to represent the allele
from the mother. The other die represents the allele from the father. If the
numbers 1, 2, 3, or 4 come up, then that die corresponds to an A-allele being
received from the corresponding parent. If a 5 or 6 shows, then a B-allele is
received from that parent.

a) What fraction of the children in your simulation have two A-alleles? What
fraction have one allele of each type? What fraction of the children have two
B-alleles?

b) What fraction of the 72 alleles are A-alleles?

One approach to mathematical modeling is to simulate the situation. YTI#1 is a
simulation that gives us some idea of what the genetic makeup of the next 

Mathematical modeling can help prevent
harmful and expensive mistakes.

In 1927, the United States Supreme Court
upheld a Virginia sterilization law, allowing
the forced sterilization of a mentally
retarded woman. It is estimated that by
1935, about 20,000 forced sterilizations had
been performed in the United States alone. 

Sweden, in what is now seen as a national
scandal, opened the “Swedish Institute for
Racial Biology” in the 1920s. During the
1940s and 1950s, Sweden sterilized about
2000 people per year. Their program was
not stopped until 1974. (Washington Post,
8/29/97)

A child with 2 A-alleles is called a dominant
homozygote. A child with 2 B-alleles is
called a recessive homozygote. A child
with one allele of each type is called a
heterozygote.



generation would look like. Normally, the simulation would generate a
population larger than 36 to get a better sense of what is happening.

A deterministic model is one that predicts what will happen. In this genetics
model, we compute the probability of a child being a dominant homozygote, 

Prob(AA) = p2.

Similarly, we get 

Prob(AB or BA) = pq + qp = 2pq and Prob(BB) = q2 .

See the tree diagram for details.

You Try It #2

Suppose that p = 2/3 and q = 1/3. 

a) What is the probability of a child having two A-alleles? One allele of each
type? Two B-alleles?

b) Suppose 36 children are born. From the probabilities in part a), how many
children do you expect to have AA, AB, BA, BB?

c) Using your answers to part b), what fraction of the 72 alleles do you expect
to be A?

d) Compare your results to YTI#1.

With an elementary understanding of genetics, we can investigate what to
expect if individuals with a recessive genetic trait are sterilized. In the model,
we remove these individuals from the genetic pool for the next generation.

You Try It #3

a) Suppose the BB children from YTI#1 were removed. What fraction of the
alleles among the remaining children is B?

b) Suppose the BB-children are removed from consideration in YTI#2b. What
fraction of the remaining alleles is B?

We simulated births of 200 children using a programmable calculator. Instead
of rolling a die, we generated 2 random numbers between 0 and 1 using a
calculator’s random number generator. When a number between 0 and 0.66667
was generated, it was interpreted as the child getting an A-allele from a parent.
A randomly obtained number between 0.66667 and 1 modeled the child
receiving a B-allele from a parent. The choice was made twice for each child, to
model receiving an allele from each parent. The result was 96 AA children, 80
AB or BA children, and 24 BB children. The 48 B-alleles from the homozygous
children were then removed from the gene pool. The remaining gene pool of
this generation is 192 A-alleles from the 96 AA children, 80 A-alleles and 80 
B-alleles from the heterozygote children, giving a total of 272 A-alleles and 80
B-alleles. Thus, for this generation, 

p = ≈ 0.773 and q ≈ 0.227.

It is valuable to run a simulation several times to get a sense of (a) what results
are typical and (b) how the results vary. We simulated a population of 200

272
272 80+

TREE DIAGRAM FOR GENETICS

Multiply probabilities on branches to get
results at end of branches.

We would have predicted 89 AA children,
89 AB or BA children and, 22 BB children
rounded to nearest integer.

TI-83 PROGRAM FOR SIMULATING A POPULATION

When you run the program, input the
fraction of A-alleles for P (0.66667 in YTI#4).
Then input the number of children you wish
to generate (200 in YTI#4).
:ClrList L1
:Disp “P”
:Input P
:Disp “NUM CHILD”
:Input I
:{0,0,0}→L1
:For(J,1,I)
:1→N
:If rand<P
:N+1→N
:If rand<P
:N+1→N
:L1(N)+1→L1(N)
:End
:Disp “BB AB AA”
:Disp L1
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children a total of 10 times and got the following results for q: 0.227, 0.225,
0.250, 0.219, 0.236, 0.251, 0.254, 0.250, 0.236, and 0.240. The average of these
results is 0.24. This is our estimate for the proportion of B-alleles among the
children’s generation. We now denote q0 ≈ 0.33 and q1 ≈ 0.24 as the
approximations for the genetic makeup of the initial generation and their
children. 

You Try It #4

a) Simulate the grandchildren’s generation by generating populations of size
200 ten times, using p = 0.76. Find the fraction of alleles that are B among
the AA, AB, and BA children. Approximate q2, the proportion of B-alleles in
the grandchildren’s generation, by averaging your 10 results. 

b) Use your result from part a) to generate 10 populations of size 200 among
the great grandchildren’s generation. Use the result to approximate q3.

You Try It #5

Figure out how our calculator program works.

a) What do the first 5 lines in the program do?

“{0,0,0}→L1“ establishes a list with three items in it, each a zero. The first value
will tell us the number of BB births (so far), the second value tells us the number
of AB or BA births, and the third value tells us the number of AA births.

“For (J,1,I)…End” is a loop that will run I times. J is the counter and begins
with a value of 1. Each time it reaches the End statement, J increments by 1
until it reaches a value of I. Then it goes on to the next statement. 

b) What happens inside the loop? First: what does the statement “1→N” do?

c) Second: What does the pair of lines “If rand<P (then) N+1→N” do? (rand is
the random number generator; it produces a number at random between 0
and 1.) Why is the pair of lines “If rand<P (then) N+1→N” repeated?

d) In the last line of the loop, L1(N) means the Nth item in our list, L1. What
does the statement “L1(N)+1→L1(N)” do? And, what does it mean in the
context of our simulation?

e) After the loop runs 200 times (which it will do if we input a value of 200 for
I), what will the sum of the numbers in the list L1 be? What will each of the
individual numbers in L1 mean?

In the last 2 lines of the program, we output the results, with labels. 

We are now going to predict the fraction of A and B alleles in each generation,
assuming that the B-allele is a recessive trait and that all individuals exhibiting
the trait caused by the B-allele are sterilized.

You Try It #6

a) Suppose p0 = 2/3 and there are 200 children born to this generation. How
many AA, AB or BA, and BB children do you expect? (Be exact; include the
fraction.) How many A and B alleles do you expect among the AA, AB, and

It is doubtful in many cases that people
who were sterilized as a result of the
eugenics movement had a genetic defect
causing mental retardation. In fact, some of
the people being sterilized may not have
been mentally retarded.

Suppose a recessive allele causes mental
retardation and that this allele is relatively
rare in the population; that is, B is small. The
results of our computations indicate that it
will take sterilizing many generations to
have an appreciable affect on the
prevalence of B in the population.
Remembering that a generation is about 
15 years, this indicates that eugenics is
somewhat ineffective.

A question that points up another problem
with the eugenics movement is, “Who
determines what traits are negative?”
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BA children? Use these numbers to predict p1 and q1, given that BB children do
not reproduce.

b) Repeat part a) using your calculation for p1 and q1 to predict p2 and q2.

c) Repeat part a) using your calculation for p2 and q2 to predict p3 and q3.

d) Assume that qn = 1/(n + 2). Use this to find pn. Assume there are 200
children born to this generation. How many AA, AB or BA, and BB children
do you expect? How many A and B alleles do you expect among the AA,
AB, and BA children? Use these answers to predict qn+1.

e) Suppose that qn = 0.04. How many generations will it take until the
proportion of B-alleles is reduced to 0.02? 

f) How many generations will it take for the proportion of B-alleles to be
reduced from 0.02 to 0.01?

g) How do the predicted results of parts a), b), and c) compare with the results
of the simulations in YTI#4?

“Common sense” would seem to indicate that sterilizing individuals with
harmful traits would reduce the trait in society. But the deterministic model
and the simulations both cast doubt on the effectiveness of eugenics in
reducing a “negative” trait from a small fraction of the population to an
appreciably smaller one. These genetic models showing the ineffectiveness of
eugenics were not difficult to develop. And yet this movement continued
worldwide for decades.  

We now turn our attention to a mathematical model that allows us to estimate a
value that would be difficult to measure directly: mutation rates. We consider a
situation in which the recessive trait caused by the B-allele is lethal, where all
BB children die before reaching reproductive age. Historically, galactosemia
was such a trait. Modeling this trait is analogous to modeling eugenics, where
the BB adults were not allowed to reproduce. We add the additional
assumption that a certain percent of the A-alleles mutate to B-alleles, as occurs
with the allele for galactosemia. 

Let’s assume that p0 = 0.3 and q0 = 0.7 and that 16% of the A-alleles mutate to 
B-alleles. Using the same program as earlier to simulate a population of 200
children, we obtained 25 AA children, 88 AB or BA children, and 87 BB
children. The genetic makeup of this generation is 50 A-alleles from the 25 AA
children, 88 A-alleles and 88 B-alleles from the heterozygote children. None of
the BB children survive. This gives a total of 113 A-alleles and 88 B-alleles. 

We now consider the mutation rate. Since 16% of the A-alleles, (0.16)113 ≈ 18,
mutate to B-alleles, we then have 113 – 18 = 95 A-alleles and 88 + 18 = 106
B-alleles. Thus, for this generation,

p1 = ≈ 0.473 and q1 ≈ 0.527.

You Try It #7

a) Simulate 200 children being born with p0 = 0.3. Find the number of AA
children and the number of AB or BA children. Use that to get the number
of A-alleles and B-alleles among the children. Subtract 16% of the A-alleles
and add that number to the number of B-alleles. Use the totals to estimate p1
and q1. Remember that no BB children will live to reproduce.

95
95 106+

Galactosemia is a genetic disease that
prevents infants from metabolizing lactose
and galactose. Galactose builds up in the
blood, resulting in liver failure. Today,
galactosemia is relatively easy to diagnose
and treat.

The prevalence of the recessive allele for
galactosemia is q ≈ 0.006, so p ≈ 0.994. This
means that q2 ≈ 0.00036 of children are born
with galactosemia. This is about 1 in 30,000.

Normal alleles mutate to the allele that
causes galactosemia.

If a population reaches a point at which its
genetic makeup remains about the same
from one generation to the next, then the
population is said to be in equilibrium. This is
what has happened in YTI#7.
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b) Using your estimates for p1 and q1, repeat part a) to get an estimate for p2
and q2.

c) Keep using your previous estimates for pn and qn to estimate pn + 1 and qn + 1
as you did in part b) until you have estimates for p3 and q3 through p8 and q8.

In YTI#7, you found that the fraction of alleles that are A and B seem to
stabilize around positive values instead of one or the other going to 0. A
deterministic model will help us understand what is happening:

You Try It #8

a) Suppose p0 = 0.3 and that 200 children are born. Find the number of AA
children and the number of AB or BA children expected. Use that to get the
number of A-alleles and B-alleles among the children. Subtract 16% of the 
A-alleles and add that number to the number of B-alleles. Use the totals to
estimate p1 and q1.  

b) Suppose p0 = 0.8 and 200 children are born. Find the number of AA children
and the number of AB or BA children expected. Use that to get the number
of A-alleles and B-alleles among the children. Subtract 16% of the A-alleles
and add that number to the number of B-alleles. Use the totals to estimate p1
and q1.

c) Suppose p0 = 0.6 and 200 children are born. Find the number of AA children
and the number of AB or BA children expected. Use that to get the number
of A-alleles and B-alleles among the children. Subtract 16% of the A-alleles
and add that number to the number of B-alleles. Use the totals to estimate p1
and q1.  

In YTI#8, we saw that there was a value for p and q that remained constant
from one generation to another. This value is the equilibrium genetic makeup
for the population. We also saw from parts a) and b) that if the genetic makeup
is not in equilibrium, then the genetic makeup of the next generation will be
closer to the equilibrium value. This shows that over time the genetic makeup
of this population stabilizes at equilibrium. Let’s see why this happens.

Suppose 200 children are born to a population where p is the proportion of 
A-alleles and q = 1 – p is the proportion of B-alleles. Then we expect 200p2 AA
children and 400p(1 – p) AB and BA children. This gives a total of 

400p2 + 400p(1 – p) = 400p A-alleles, 

400p(1 – p) B-alleles, and 

400p + 400p(1 – p) = 400p(2 – p) alleles in total.

Assume that the fraction of A-alleles that mutate to B-alleles is x. Then the
number of A-alleles remaining after mutation is 

400(1 – x)p.

Thus, we have 

p1 = = .
1
2

–
–

x
p

400 1
400 2

( – )
( – )

x p
p p

Notice that the proportion of A-alleles
increases.

Notice that the proportion of A-alleles
decreases.

Notice that the proportion of A-alleles
remains constant, or is in equilibrium.

In YTI#7 and YTI#8, x = 0.16.

If x = 0.16, this equation becomes

pn = 

Check to see if it gives the same answers to
YTI#8, parts a, b, and c with pn–1 = 0.3, 0.8,
0.6, respectively.

0 84
2 1

.
– –pn
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If x is known, then the equation 

pn = 

can be used to approximate pn over time. Furthermore, at equilibrium 
pn = pn–1 = p, so we solve the equation 

p = 

to find that the equilibrium proportion of A-alleles is 

p = 1 ± .

Since q = 1 – p, if p = 1 – then q = . This means that the fraction of
children born with BB is q2 = x. Thus, the fraction of children with the disease
caused by the B-allele equals the mutation rate.

xx

x

1
2

–
–

x
p

1
2 1

–
– –

x
pn

We have discovered that the mutation rate
for galactosemia is about 0.000036 or about
one allele in 30,000.
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You will probably get about 16 AA children, 16 BA or AB
children, and 4 BB. 

About 2/3.

Prob(AA) = 4/9, Prob(AB or BA) = 4/9, and 
Prob(BB) = 1/9. 

Predicts 16 are AA, 16 are AB or BA, and 4 are BB. 

2/3

It is likely that the results will be similar, but not the
same. 

About 

You should get q2 ≈ 0.20 = 1/5.

q3 ≈ 0.17 ≈ 1/6.

Clear List L1 of any values it may have had from
previous work. Ask for and receive input for a value to
assign to P, the probability of an A-allele. Ask for and
receive input for a value of I, the number of child births
in the simulation you are going to do.

“1→N” makes N = 1.

This command chooses a random number and tests to
see if it is less than the value of P. If it is less, this is
interpreted as receiving an A- allele from the first parent.
The command is repeated to determine whether an 
A-allele is received from the second parent.

“L1(N)+1→L1(N)” adds 1 to one of the elements of the
list. If both random numbers were > P (of which there is
probability 1 – P), we interpret this as the birth of a BB
child. In this case, the value of N will not change; N will
still be 1. So the statement causes “L1(1)+1→L1(1); that is,
the first item in the list increases by 1. This means we
have added 1 to the number of BB births. If one of the
random number choices is < P and the other is > P, we
interpret this as an AB or BA birth and increase the value
of N by 1; L1(2)+1→L1(2). Finally, if both random
number choices are less than P, the “child” is AA, so the
third number in the list increases by 1.

The sum L1(1)+L1(2)+L1(3) will be 200, or whatever
number you input for I, the number of births you want
to simulate. The list started at 0, 0, 0, and one of the
entries increased by 1 each time the program went
through the loop. It looped I times, so if we input 200 as
the value of I, the sum of the outcomes will be 200. The
individual entries give the number of BB births, the
number of BA or AB births, and the number of AA
births, in that order.

88 AA children, 88 AB or BA children, and 22

BB children. This gives 266 A-alleles and 88 B-alleles. 

q1 = = 1/4 so p1 = 3/4.

112.5 AA children, 75 AB or BA children, and 12.5 BB
children. This gives 300 A-alleles and 75 B-alleles. 
q2 = = 1/5 = 0.2 so p2 = 4/5 = 0.8.

128 AA children, 64 AB or BA children, and 8 BB
children. This gives 320 A-alleles and 64 B-alleles. 
q3 = = 1/6 ≈ 0.167 so p3 = 5/6 ≈ 0.833.

pn = . There will be 200 AA children, 

400 AB or BA children and 200 BB children. 

This gives 400 B-alleles and 400

A-alleles. The number of B-alleles divided by the total 

number of alleles simplifies to qn + 1 = = 

= .

If qn = 0.04 = 1/25, then n = 23. We want qm = 1/50, so 
m = 48. This is an additional 25 generations. If a
generation is about 20 years, this is 500 years.

If qn = 0.02 = 1/50 then n = 48. We want qm = 1/100, so 
m = 98. This is an additional 50 generations (another
1000 years).

Results should be reasonably close.

p1 ≈ 0.5 and q1 ≈ 0.5.

p2 ≈ 0.56 and q2 ≈ 0.44.

The results for pj approach 0.6; qj approaches 0.4.

18 AA children and 84 AB and BA children giving 120 
A-alleles and 84 B-alleles. 19.2 A-alleles mutate to 
B-alleles giving 100.8 A-alleles and 103.2 B-alleles. Thus,
p1 = 100.8/204 ≈ 0.494 and q1 ≈ 0.506.

128 AA children and 64 AB and BA children giving 320
A-alleles and 64 B-alleles. 51.2 A-alleles mutate to 
B-alleles giving 268.8 A-alleles and 115.2 B-alleles. Thus,
p1 = 268.8/384 = 0.7 and q1 = 0.3.

72 AA children and 96 AB and BA children giving 
240 A-alleles and 96 B-alleles. 38.4 A-alleles mutate to 
B-alleles giving 201.6 A-alleles and 134.4 B-alleles. Thus,
p1 = 201.6/336 = 0.6 and q1 = 0.4.
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O U T S TA N D I N G  PA P E R S

Editor’s Comments
This is our sixth HiMCM Special Issue. Since space does not permit
printing all of the nine national outstanding papers, this special section
includes the summaries from six of the papers and edited versions of
three. We emphasize that the selection of these two does not imply that
they are superior to the other outstanding papers. They were chosen
because they are representative and fairly short. They have received
light editing, primarily for brevity. We also wish to emphasize that the
papers were not written with publication in mind; the contest does not
allow time to revise and polish. Given the 36-hour time limit, it is
remarkable how well written many of the papers are.

November

We appreciate the outstanding work of students and
advisors and the efforts of our contest director and
judges. Their dedication and commitment have made
HiMCM a big success. We also wish to note that this
special section takes the place of our regular HiMCM
Notes column, which will return in the next issue.
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William P. Fox
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Florence, SC 29501
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The High School Mathematical Contest in Modeling (HiMCM)
completed its sixth year in excellent fashion. The growth of
students, faculty advisors, and the contest judges is very evident
in the professional submissions and work being done. The contest
is still moving ahead, growing in a positive first derivative, and
consistent with our positive experiences from previous HiMCM
contests.

This year the contest consisted of 275 teams (a growth of about
30% from last year) from twenty-five states and from outside the
USA. This year was the first year that schools were charged a
registration fee of $45 for the first team and $25 for each
additional team. 

Thus our contest continues to attract an international audience.
The teams accomplished the vision of our founders by providing
unique and creative mathematical solutions to complex, open-ended,
real-world problems. This year the students had a choice of two
problems. Of the 275 teams, 156 submitted solutions to the B
problem, and 119 submitted solutions to the A problem.

Problem A: What is it Worth?
In 1945, Noah Sentz died in a car accident and his estate was

handled by the local courts. The state law stated that 1/3 of all
assets and property go to the wife and 2/3 of all assets go to the
children. There were four children. Over the next four years, three
of the four children sold their shares of the assets back to the
mother for a sum of $1300 each. The original total assets were
mainly 75.43 acres of land. This week, the fourth child has sued
the estate for his rightful inheritance from the original probate
ruling. The judge has ruled in favor of the fourth son and has
determined that he is rightfully due monetary compensation. The
judge has picked your group as the jury to determine the amount
of compensation.

Use the principles of mathematical modeling to build a model
that enables you to determine the compensation. Additionally,
prepare a short one-page summary letter to the court that 
explains your results. Assume the date is November 10, 2003.

Problem B: How Fair are Major League
Baseball Parks to Players?
Consider the following major league baseball parks: Atlanta
Braves, Colorado Rockies, New York Yankees, California Angles,
Minnesota Twins, and Florida Marlins.

Each field is in a different location and has different dimensions.
Are all these parks “fair”? Determine how fair or unfair is each
park. Determine the optimal baseball “setting” for major league
baseball.

COMMENDATION: 

All students and their advisors are congratulated for their varied
and creative mathematical efforts. The thirty-six continuous hours
to work on the problem provided (in our opinion) a vast
improvement in the quality of the papers. Teams are commended
for the overall quality of work. 

Again this year, many of the teams had female participation,
which shows that this competition is for both male and female
students. Teams again proved to the judges that they had “fun”
with their chosen problems, demonstrating research initiative and
creativity in their solutions. 

JUDGING: 

We ran three regional sites in December 2003. Each site judged
papers for both problems A and B. The papers judged at each
regional site were not from their respective region. Papers were
judged as Outstanding, Meritorious, Honorable Mention, and
Successful Participant. All regional finalist papers for the Regional
Outstanding award were brought to the National Judging. For
example, eight papers may be discussed at a Regional Final and
only four selected as Regional Outstanding but all eight papers
are brought and judged for the National Outstanding. The
national judging chooses the “best of the best” as National
Outstanding. The National Judges commend the regional judges
for their efforts and found the results were very consistent. We
feel that this regional structure provides a good prototype for the
future of the contest’s structure as it continues to grow.

JUDGING RESULTS:

National & Regional Combined Results

GENERAL JUDGING COMMENTS: 

The judges’ commentaries provide comments on the solutions to
each of the two problems. As contest director and head judge for
the problems, I would like to speak generally about team
solutions from a judge’s point of view. Papers need to be very
coherent, concise, and clear. Students need to restate the problem
in their own words so that the judges can determine the focus of
the paper. Papers that explain the development of the model,
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Outfield Dimensions Wall Height

Franchise Left Left Ctr Right Right Left Ctr Right Area of
Field Ctr Field Ctr Field Field Field Field Fair Ter

Angels 330 376 408 361 330 8 8 18 110,000

Braves 335 380 401 390 330 8 8 8 115,000

Rockies 347 390 415 375 350 8 8 14 117,000

Yankees 318 399 408 385 314 8 7 10 113,000

Twins 343 385 408 367 327 13 13 23 111,000

Marlins 330 385 404 385 345 8 8 8 115,000

Problem National Regional Meritorious Honorable Successful Total
Outstanding* Outstanding Mention Participant

A 4 12 33 45 25 119

B 5 10 42 75 23 155

Total 9 14 51 104 33 274



assumptions, and its solutions and then support the solution
findings mathematically generally do quite well. Modeling
assumptions need to be listed and justified but only those that
come to bear on the team’s solution (that can be part of
simplifying the model). Laundry lists of assumptions that are
never referred to in the context of the model development are not
considered relevant and deter from the paper’s quality. The model
needs to be clearly developed, and all variables that are used need
to be defined. Thinking outside of the “box” is also an ingredient
considered important by judges. This varies from problem to
problem but usually includes model extensions or sensitivity
analysis of the solution to the teams’ inputs. A clear conclusion
and answers to specific scenario questions are all key components.
The strengths and weakness section of the paper is where the
team can reflect on the solution. Attention to detail and
proofreading the paper prior to final submission are also
important because the judges look for clarity and style.

CONTEST FACTS:

Facts from the 6th Annual Contest:

• A wide range of schools/teams competed including teams from
Hong Kong.

• The 275 teams represented 60 institutions; 44 repeats and 16
new institutions.

• 44.36% of the teams had female participation. Forty-three of the
275 teams were all female.

• There were 953 student participants, 548 male (57.5%) and 395
female (42.5%).

• Schools from 25 states participated in this year’s contest.

THE FUTURE:

This HiMCM contest that attempts to give the underrepresented
an opportunity to compete and achieve success in mathematics
endeavors appears well on its way in meeting this important goal. 

We continue to strive to grow. Any school/team can enter the
contest, as there will be no restrictions on the number of schools
entering. A regional judging structure will be established based on
the response of teams to compete in the contest.

Again, these are exciting times for our high school students.
Mathematics continues to be more than learning skills and
operations. Mathematics is a language that involves our daily
lives. Applying the mathematical principles that one learns is key
to future success. The ability to recognize problems, to formulate a
mathematical model and solve it, to use technology, and to
communicate and reflect on one’s work is key to success. Students
develop confidence by tackling ill-defined problems and working
together to generate a solution. Applying mathematics is a team
sport.

Advisors need only be a motivator and facilitator. They should
permit students to be creative and imaginative. It is not the
technique that is fundamental, but the process that discovers how
assumptions drive the techniques. Mathematical modeling is an

art and a science. Through modeling, students learn to think
critically; communicate efficiently; and be confident, competent
problem solvers for the new century.

Contest Dates: Mark your calendars early: the next HiMCM will
be held in November 2004. Registrations of teams are due in
October 2004. Teams will have a consecutive 36-hour block within
a window of about two weeks to complete their chosen problem.
Teams can registrar via the worldwide web at www.comap.com.

HiMCM Judges Commentary

Problem A: What is it Worth?
Although some teams initially believed that this was a simple
algebraic problem involving the time value on money (i.e., a
Future Value = P(1 + I)R problem), it soon became apparent to the
better teams that they needed to perform some modeling and
critical analysis of the situation.

The judges were impressed with the creativity, quality of the
analysis, and the writing by the teams modeling Problem A.
Teams dealt with time value of money, and they dealt with the
value of land over time. It was imperative for teams working with
land value to assume or “pick” a location (county or state) in
order to estimate through modeling the appreciation of the land’s
value. Doing this provided teams an opportunity to restate the
problem in more manageable terms. This allowed successful
teams to move from the general ill-defined problem to an
attackable, more specific, defined problem.

Many teams attacked this problem only as a time value of money
issue. A key aspect here was obtaining an interest rate or index
growth rate over time. Research as to which values were the most
appropriate was necessary. Many teams merely stated values. Judges
expected the teams to develop a sub-model to determine this.

One of the items that distinguished the better papers was that
those teams calculated the “worth” from various models (money,
land, etc.) and then came to a final conclusion about
compensation after considering all their possible outcomes.

Verification of models or model testing was also an important
discriminator. Some teams tested their models to see if the results
made common sense. Others compared their predictions with
historical results that they were able to obtain via web sources. It is
noted that some answers given by teams made little practical sense.

Problem B: How Fair are Major League
Baseball Parks to Players? 
This was the purest modeling problem of the two. This problem
was ill defined because students needed to determine what they
meant by “fair.” Teams needed to step back and insure that they
had a well-defined problem, defined “fair,” and determined
which aspects of “fair” they were trying to model.

Some teams did not define “fair” until after they completed their
models, which was deemed too late by many judges.
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The judges commented that the statement of assumptions with
justification, style of presentation, and depth of analysis was very
good. The better papers offered a good diversity of solutions.
Problem B, in comparison to Problem A, appeared to lend itself
better to consideration of a variety of assumptions and
justifications.

It was critical for teams to define “fair” in order to compare the
baseball parks. The judges were surprised that no team
recommended changing the dimensions of ballparks in order to
make them more “fair” based on their mathematical findings. The
better papers considered such variables as altitude, wind,
humidity, temperature, and other environmental factors in their
model or their discussions of the model.

Many papers used computer code to determine the issue of
fairness of the baseball parks. Computer codes used to implement
mathematical expressions can be a good modeling tool. However,
judges expect to see an algorithm or flow chart in the paper from
which the code was developed. Successful teams provided some
explanation or guide to their algorithm(s)—a step-by-step
procedure for the judges to follow. The code that teams attached
to their paper may only be read for those papers that reach the
final rounds of judging. The results of any simulation or computer
code need to be explained, and sensitivity analysis should be
performed. 

For example, consider an algorithm for the flip of a fair coin:

An algorithm such as this would be expected in the body of the
paper with the code as an appendix.

The judges commend the teams for a truly outstanding job on a
difficult, open-ended problem that provided some interesting
reading. 

GENERAL COMMENTS FROM JUDGES:

Executive Summaries: 

These  are still, for the most part, one of weakest parts of team
submissions. These should be complete in ideas not details. They
should include the “bottom-line” and the key ideas used. They
should include the particular questions addressed and their
answers. Teams should consider a three paragraph approach:
restate the problems in their own words, give a short description
of their method to model and solve the problem (without giving
specific mathematical expressions), and state the conclusions,
including the numerical answers in context.

Restatement of the Problem: 

Problem restatements are important for teams to move from the
general case to the specific case. They allow teams to refine many
aspects of their thinking to give their model uniqueness and a
creative touch.

Assumptions/Justifications:  

Teams should list only those assumptions that are vital to the
building and simplifying of their model. Assumptions should not be
a reiteration of facts given in the problem description. Assumptions
are variables (issues) acting or not acting on the problem. Every
assumption should have a justification with it. Variables chosen
need to be listed with notation and be well defined.

Model: 

Teams need to show a clear link between the assumptions they
listed and the building of their model or models. 

Model Testing: 

Model testing is not the same as testing arithmetic. Teams need to
compare results or attempt to verify (even with common sense)
their results.

Teams that use simulation must provide a clear step-by-step
algorithm for the proposed simulation. Lots of runs and related
analysis are required when using a simulation to model a
problem. Sensitivity analysis is also expected to determine how
sensitive the simulation is to the model’s key parameters.

Conclusions: 

This section deals with more than just results. Conclusions might
also include speculations, extensions to the model, and
generalizations of the model. Teams should ask themselves what
other questions would be interesting if they had more time and
then tell the judges about their ideas.

Strengths and Weaknesses: 

Teams should be open and honest here. They should answer the
question, “What could we have done better?”
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INPUT: Random number, number of trials

OUTPUT: Heads or tails

Step 1: Initialize all counters.

Step 2: Generate a random number between 0 and 1. 

Step 3: Choose an interval for heads, like [0.0.5]. If the
random number falls in this interval, the flip is 
a heads. Otherwise the flip is a tails.

Step 4: Record the result as a heads or a tails.

Step 5: Count the number of trials and increment: 
Count = Count + 1.



References: 

Teams may use references to assist in modeling the problem.
However, they must also identify the sources. It is still required
of the team to show how the model was built and why it was
the model chosen for this problem. Teams are reminded that
only inanimate resources may be used. Teams cannot call upon
real estate agents, bankers, or any other real person to obtain
any information related to the problem.

Adherence to Rules: 

Teams are reminded that detailed rules and regulations are
posted on the high school contests area of the COMAP Website.
Teams are reminded that the 36-hour time limit is a consecutive
36 hours.

Problem A Summary:
Clarkstown South High School
Advisor: Mary Gavioli

Team Members: Simi Bhat, Daniel Gendler, 
Mitchell Livingston, Terry Van Hise

When the rightful inheritance of a beneficiary is not given
shortly after the probate court’s original ruling, finding an
appropriate amount of compensation for that inheritance is
complicated by several factors. Noah Sentz’s fourth child
should have been awarded 1/4 of 2/3 of his estate according to
state law at the time of Mr. Sentz’s passing. However, the fourth
child is now suing for compensation because he did not receive
his portion of the estate. There were several factors we
considered when calculating Mr. Sentz’s compensation, the
most important of which being inflation. Inflation is the
progression of changing value of a dollar over time. This means
that the items a dollar could purchase when Mr. Sentz passed
away probably would not cover the price of that item at the
present time. We found the inflation rate from the time that the
three children sold their portions of the estate to the present to
be 802.9%. This means that if the land was worth $1200 and
other personal assets were valued at $100 then, then the land
would be worth $9624 and the other personal assets would
have a value of $802.90 now. We also took into account the
revenue the fourth child would have been deprived of because
he did not own the land since 1945. The total amount of
revenue generated from the land would have been $53,568.
However, the fourth son would have had to pay additional
income tax on this revenue, which would amount to $13,894.80.
He would have also had to pay property tax on this land for the
past fifty-eight years, a total of $316.04. To find the final
monetary compensation the son should be given we summed
the values of all assets and income and subtracted all taxes
giving Nick a final compensation of $49,784.06. We made a
generalized model, allowing for the input of several variables
such as state and federal income tax rate, original value of land,
original value of personal assets, and such variables. To increase
the ease of use of our model, we created a computer program in
Java so that court officials could simply input the variables into
the program and receive an output of the calculated monetary
compensation the disputing beneficiary should receive. The
math model we created uses data taken from government
references and economic journals. We feel it is a feasible and
accurate model.

Problem A Summary: 
Mills E. Godwin High School
Advisor: Ann Sebrell

Team Members: Derek Austin, Srini Sathyanarayanan, 
Matthew Walker, Zhiyuan Xu

We the jury have determined that the plaintiff, the fourth child
of the late Noah Sentz, deserves monetary compensation for
assets not awarded in the amount of $18,772.35. Through
investigating the problem, we researched various aspects of
inheritance laws as well as the economic factors influencing the
asset price. Our amount of compensation is the modem value of
his portion of the assets minus property taxes accrued since
1945. We found this amount of compensation through a
mathematical model that we created.

We initially created a simple model in which the plaintiff would
receive value only from land assets and built upon this. We
established the property as rural farmland from Pennsylvania.
We realized that rural farmland is highly influenced by inflation
and the appreciation of land value. By tracking basic land value
patterns, we were able to roughly estimate the value of land in
2003. Through researching Consumer Price Index we
approximated the influence of the cost of living on the price of
consumer goods, which we then included in the model as part
of his compensation. We decided that the four children initially
split the consumer goods while the mother received her portion
of the estate only in farmland; in other words, we accounted for
an uneven split in the type of assets distributed, even though
the amount of assets for each group was even. Finally, we
deducted a 9.5% property tax rate from the estimated value of
the land portion of his share of assets to create a final amount of
compensation.

Through thorough examination of various factors influencing
the value of the estate, we can confidently conclude that the
compensation for the fourth child’s inheritance in this situation
should be $18,772.35.

Problem B Summary: 
Maggie L. Walker Governor’s School
Advisor: John Barnes

Team Members: Guilherme Cavalcanti, Thomas Fortuna, 
Mrinal Menon, Derek Miller

Our first step in evaluating whether or not the fields were fair
was to hypothesize that teams with a greater penchant for
hitting home runs would build smaller stadiums to hit more
home runs, while teams that could not hit as many home runs
would build larger stadiums in order to deprive other teams of
home runs. We then gathered available team data for three to
five years before each team built their current stadium, trying to
determine if their home run performance in relation to their
league affected the creation of their fields. No relationship was
found between team performance and the pure dimensions of
the field as far as home runs were concerned. 

We then decided to test if the initial velocity of a baseball hit at
each field was significantly different in a perfect, airless world.
It was determined that there was no significant difference in
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initial velocity for each stadium. Research, however, revealed that
there was a significant difference in the amount of home runs hit
at each of the six assigned stadiums, specifically Coors Field. The
only construction difference between Coors Field and all other
stadiums was its extreme altitude. We then proceeded to modify
our baseball projectile motion model to include air resistance, to
account for changes in altitude and temperature. Two forms of
Euler’s method were used to model the trajectory of a baseball
through a dense atmosphere. This updated model revealed that
altitude and temperature were major factors in determining a
field’s fairness; hitting home runs at sea level fields required a
much greater initial velocity.

We then proceeded to define fairness in our fields. Our first belief
was that fields that are symmetrical about their centerlines (right
and left field distance and wall heights are equal) are fair to both
right-handed and left-handed hitters. Of the six stadiums, Pro
Player Stadium of the Florida Marlins was the only one that could
be considered fair. The remaining five teams in increasing fairness
are the Denver Rockies, New York Yankees, Atlanta Braves, and
Anaheim Angels. The Twins’ stadium, being temperature
controlled, did not apply to our model. We also believe that we can
create a fair field distance by taking average distances of existing
fields that are getting league average home runs, accounting for
temperature and altitude variations. Using these two beliefs and
our air resistance model, we can create a “fair” field knowing only
the altitude, temperature, and uniform wall height.

Problem B Summary: 
Illinois Mathematics and Science Academy
Advisor: Steven Condie

Team Members: Jeffrey Chang, Alex Garivaltis, David Xu

To begin tackling the problem, we decided to use a national
batting average of 0.25 as an indicator of fairness. Our vision of
the “fairest” field was one that provided its players with a level of
offensive and defensive opportunities consistent with the national
average. Therefore, a ballpark that produced a batting average
closest to the national average was considered to be the optimal
setting. The model consisted of a computer program that would
automatically calculate the players’ positions on a Cartesian plane
given the dimensions of a field. To determine the batting average
for any of the given ballparks, we created an algorithm that
would simulate 10,000 at-bats, taking into account appropriate
ratios for strikeouts and foul-outs. The variables Θ (initial angle
with respect to ground), v0 (initial velocity of the ball), and Φ
(angle of ball’s direction of travel on Cartesian plane) were all
randomized within reasonable ranges for each simulation.

The program then analyzed the trajectory of the ball, taking into
account the wind speed and any effects from low air pressure. By
calculating the position of the ball’s landing spot, our model
determined whether the ball would be caught (resulting in an
out), would not be caught (resulting in a safe base advance), or
would fly over the fence as a home run (counting as four base
advances). Our simulation was able to compute the batting
average by keeping track of the number of base advances over
10,000 simulations.

To assess the fairness of the stadiums played in by the Angels,
Braves, Rockies, Yankees, Twins, and Marlins; we found the

batting averages resulting from each ballpark’s specific
dimensions and environmental conditions. The resulting order of
fairness for the ballparks, from fairest to least fair, was:

Yankees (0.287), Braves (0.294), Twins (0.308), Marlins (0.316),
Angels (0.322), Rockies (0.341)

To determine the optimal setting in general we decided to employ
an evolution-based simulation method. The program generated a
random set of field dimensions within reasonable limits and
calculated the expected batting average using 10,000 at-bat
simulations. The computer then continued generating random
ballparks, calculating the batting average every time. Whenever a
ballpark resulted in a batting average that was closer to the
national average than any previously checked ballpark, it became
the new optimal setting. After repeating this process for a long
time, the best setting naturally surfaced.

Problem B Summary: 
Dubuque Hempstead High School
Advisor: Karen Weires

Team Members: Tom Duggan, Josh Lichti, Cory McDermott, Brad Willenbring

To quantitatively compare the fairness of the given stadiums, we
defined numerous variables and methods of measurement. A
computer program was created to simulate the behavior of hits in
each stadium, taking into account its dimensions and prevailing
environmental conditions. The program also simulated the
distance the outfielders need to move in order to field all non-
homerun hits. This data was coupled with numerous other factors
including backstop length and field orientation to determine each
stadium’s Defensive Bias Rating (DBR), a measure of how
offensively or defensively biased the given ballpark is.

The DBR value was then factored into the calculation of another
value, the Oppositional Equality Rating (OER), a measure of how
well matched a given team is to their stadium. A team that hits
well overall, stationed in a stadium that caters to a hitting team, is
going to have a distinct advantage because they play  50% of their
games on their home field.

The DBR and OER both proved to be very accurate models of
real-life conditions among the stadiums in question. The Colorado
stadium was determined to be the most unfair stadium based on
its OER rating. Environmental conditions make hits in Colorado
tend to fly further, coupled with a team that statistically (already)
seems to prefer offense to defense. In other cases, such as Atlanta,
the team’s ability wasn’t paired with its stadium, so the two
canceled each other out in the OER rating.
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Outfield Dimensions Wall Height

Left Left Ctr Right Right Left Ctr Right
Field Ctr Field Ctr Field Field Field Field

Ideal Ballpark 387 393 434 397 335 9.8 13.1 6.7Dimensions (ft)



Problem B Summary: 
Mills E. Godwin High School
Advisor: Ann Sebrell

Team Members: Deepa Iyer, Brandon Murrill, 
Omari Stephens, David Williamson

During our investigation of this situation, our team aimed to
derive an optimal model for fairness in a baseball park. To achieve
this goal, we created a list of ten factors that we felt could affect
the fairness equilibrium of a field. We researched the
specifications of these ten factors and found an abundance of data
from various sources.

By analyzing the magnitude of the effect of each factor at all of the
six parks, we created a score for each park that led us to our
conclusions. We found that each park was biased toward the
offense or the defense; none was completely fair.

We tested our models by comparing the classifications we
generated to the historical conception of each park: whether the
venue was considered more favorable for a hitter or a pitcher.

We then proceeded to develop an optimal, completely fair baseball
environment. We strove to ensure that our park favored neither the
offensive or defensive team. Finally, we generated two strategies to
develop a fair stadium. The first method required different factors
to favor either the offense or the defense; the total effect of all the
factors remained at equilibrium. The second method called for
nearly neutral values for every single factor, again yielding a
neutral venue overall. We combined the two strategies to develop
a realistic, optimal design for a truly fair field.

Problem A Paper: The Spence School
Advisor: Eric Zahler

Team Members: Jillian Bunting, Madeleine Douglas, Yi Zhou

PROBLEM RESTATEMENT

Noah Sentz died in a car accident in 1945. His wife received one-
third of his estate, and the children received two-thirds. Over the
next four years, three of the four children sold their shares back to
their mother for $1300 each. Noah’s assets were mostly comprised
of 75.43 acres of land. In early November 2003, the fourth child
sued for his rightful share. The judge ruled that he is due cash
compensation. 

LETTER TO THE COURT

We created a mathematical model for determining the plaintiff’s
compensation. We made several assumptions to produce an
effective model. These included the dates of the death of Noah
Sentz and the subsequent sale of his assets by his three sons, that
the first son received only land, that the value per acre was
uniform, that the non-land assets appreciated at the rate of
inflation, and that the values of each child’s share was equal 
in 1945. 

Besides these, our model made no assumptions about the specific
values of variables. Instead, all variables are available to be
manipulated. This is a very effective way of determining

compensation because it can be implemented in a variety of
situations. This is especially important because certain factors 
(i.e., value per acre, appreciation of land) are specific to
geographic regions.

The benefits of our model are that it gives a fairly good range of
values for the compensation and that it leaves only one factor to
be determined by the court (the value of land per acre in 1945).
Even without determining the value per acre, our model tells us
that the compensation due the fourth son is between $55,400.39
and $90,162.43.  Our model is also strong because it made no
arbitrary assumptions. The inflation rates between years were
based on historical data. The land appreciation rate was inferred
from national data.

We feel confident that our inflation and land appreciation rates
are fairly accurate. Therefore, we respectfully recommend that the
model be used to determine compensation after the price per acre
is determined.

ASSUMPTIONS AND JUSTIFICATIONS

In 1945, the worth of each child’s share was equitable. We assume
this because none of the children sued within four years. The suit
did not arise until 58 years later, implying that there was no
problem for a long time. 

The fourth son received non-land assets that did not appreciate as
fast as the land. He is suing for the difference between what his
share is worth now and one-sixth of what the estate would be
worth today.

Mr. Sentz died in January of 1945. We assumed this in order to
have a base date to calculate inflation.

The first, second, and third children sold their shares back to their
mother in January 1947, January 1948, and January 1949,
respectively. This allowed us to find inflation values. We chose
dates spread evenly over the four-year period to reflect the
changing inflations over those four years.

The value of the land per acre is uniform. This allowed us to
relate our equations to one another, and simplifies the problem by
eliminating a variable.

All other assets appreciate at the rate of inflation. This simplifies
the problem.

The rate of land appreciation is constant and reflects the best-fit
curve that we found (see Figure 1 and Appendix B). This allowed
us to create equations; with land appreciation as a variable, there
is too much unknown. We considered it reasonable to assume that
the land appreciation was roughly equal to the overall trend in the
United States.

The first son only received land. We assumed this in order to
simplify the problem and allow us to solve for the value of the
land in 1945. 
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OUR APPROACH

Land appreciates faster than the rate of inflation (see Appendix A
for a proof). Since other assets appreciate at the rate of inflation,
their growth over a long period of time is less than that of land.
As a result of a discrepancy in distributing land and other assets
(the fourth child only received non-land assets), the fourth child’s
share has not appreciated at the same rate as the land. Thus, if we
calculated how much a sixth of the entire estate would be worth
now and how much the fourth child actually has, the difference
would be how much the fourth child is entitled to.

VARIABLES

L, with subscripts corresponding to children and mother, is the
amount of land in acres each received. A subscript of M refers to
the mother, a subscript of 1 refers to the first child, a subscript of 2
refers to the second child, and so forth. V is the value per acre in
1945. A is the rate of appreciation of land per year since 1945. S,
with subscripts corresponding to the subscripts of L, is the value
of the non-land assets the children received in 1945. T is the total
value of the estate in 1945. I is the inflation rate between 1945 and
the given year. P is the total value of non-land assets in 1945.
Finally, t is the number of years since 1945. From these variables,
we generated these equations:

P = S2 + S3 + S4 + SM. The total value of the non-land assets is
equal to the sum of what was distributed.

T = 75.43V + P. The total value of the estate is the sum of the value
of the land and the value of the other assets.

V(L1 + L2 + L3 + LM) = 75.43V. The sum of all land distributed is
equal to the total value of the land.

L1V = L2V + S2 = L3V + S3 = S4 = (LMV + SM)/2. This comes from
the assumption that at the time of distribution, each child received
a sixth of the estate, and the mother received a third.

At t years from January 1945, the value of person X’s inheritance
can be expressed: (LXV)(1 + A)t + (SX)(1 + I1945M).

The trend in a graph of national trends in land appreciation
(Figure 1) appeared exponential. We ignored the dip at the end of
the graph because the trend of exponential growth continues, as
evidenced by Figure 2. We estimated coordinates on the land-
value graph in Figure 1. From these we found an exponential
model (see Appendix B). The general form of the exponential
model was y = abx, where a is the starting value and b is the
increase per year. We determined b was 1.0857. Thus land
appreciates at a rate of 8.57% per year. Our calculated a was 100.
Using this equation, we calculated the value of each child’s share
based on the value of the first brother’s share, which was entirely
land.

1 + A = b = 1.0857

(L1V)(l + A)2 = 1300

(L1V)(l.0857)2 = 1300

(L1V) = $1102.87, which is the value of each child’s share in 1945.

To determine the value of the estate in 1945, we multiplied 1102.87
by 6 and obtained $6617.21 = T. We looked up the inflation rate
between January 1945 and November 2003: 940.45% (see
Bibliography). So the fourth brother’s share is now worth:

November 2003 Value = 1102.87(1 + I2003)

$11474.81 = 1102.87(10.4045).

We were told that the estate was comprised mainly of land, which
we took to mean that the land’s value was more than 50% of the
total estate value, but less than or equal to five-sixths of it, since
the fourth brother received only non-land assets comprising one-
sixth of the total. Thus, we created a range of compensation. If the
land is half the total value, then its 1945 value is $6617.21/2 =
$3308.605. Then the current value of the entire estate is:

(1.0857)58 (3308.605) + 10.4045(3308.605) = $424200.76 .

His portion would be a sixth of that, or $70700.13. Then he should
receive the difference between that figure and $11474.81:
$59225.32. The value per acre would be: 75.43V = 3308.605, or
$43.86. 

On the other hand, if land constituted everything but his portion,
5/6 of the total estate, the value of the whole is:

(1.0857)58 (5514.34) + 10.4045(1102.87) = $661101.91.

Then his portion should be $110183.65, which means he should
receive $98708.84. The value per acre is: 75.43V = 5514.34, or
$71.11 (see Figure 3). The range of compensation is then between
$59225.32 and $98708.84. It should be closer to the higher value, 
as “mainly” seems to imply closer to five-sixths than to half.

The function that determines the compensation is (see Appendix
C):

General: – S4(1 + I2003)

Specific: f(V) = 

– 1102.87(10.4045).

STRENGTHS OF MODEL

1. The general model needs few assumptions because most of its
components are variables. It is flexible in that if only a few
values of variables are known, by manipulating the equations a
solution can be determined. In this case, only land appreciation
and rate of inflation, both of which were found online, were
necessary to find a compensation range. Finding the best value
in that range requires only the value of the land per acre.

2. The general model accounts for assets and property, as well as
the percentage of the total each comprises.

3. The model is easy to use and is not caught up in accounting for
thousands of possibilities that arise from ambiguity of the
variables. To account for every possible range of values of each
variable would spawn a convoluted model that may not yield
an accurate answer.

4. The data needed to use the model are readily available.

1 0857 75 43 10 4045 6617 21 75 43
6

58. ( . ) . ( . . )V V+ −

( ) ( . ) ( )( . )1 75 43 1 75 43
6

2003+ + + −A V I T Vt
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5. The model is fairly comprehensive because it accounts for
various factors, including land appreciation and inflation rate.

6. The model does not require a jury to use high-level math.
Plugging in values and adding to get a total requires only sixth-
grade skills.

WEAKNESSES OF THE MODEL

1. The assumption that the value of land was uniform was
necessary for the general method. A difference in the value
would make the problem more complicated, as it is nearly
impossible to account for disparities without knowing other
factors such as location.

2. The assumption that the assets appreciate at the inflation rate is
unrealistic.

3. The assumption that the land appreciation trend is perfectly
exponential ignores other factors that affect it, such as natural
disasters and location. Also, the land appreciation was derived
from one graph. 

4. The assumptions of the date of Noah’s death and the dates
when the brothers sold their shares affect the rate of inflation
and land appreciation. This would alter the total calculated
value of the estate in 1945. 

5. The assumptions that the first brother only inherited land and
that he was the first to sell his shares are crucial. While the
latter assumption is logical (the brother with the most land had
to have sold his shares first or else his land would have
appreciated and not have been worth the same as the assets of
the other brothers), the former assumption was for convenience
and affects the estate value in 1945. 

6. The assumption that the inequity arose because of unequal land
distribution is the basis for the entire model. However, it is not
explicitly stated that such is the case.

APPENDIX A: 
PROOF THAT THE RATE OF LAND APPRECIATION 
IS GREATER THAN THAT OF INFLATION

T(1 + I2003) < 

We know that I2003 = 940.54% (or 9.4045).

T(1 + 9.4045) < 

10.4045T < 75.43V(1 + A2003)58 + 10.4045P

10.4045T < 75.43V(1 + A2003)58 + 10.4045(T – 75.43V)

10.4045T < 75.43V(1 + A2003)58 + 10.4045T – 784.81V

784.81V < 75.43V(1 + A2003)58

10.4045 < (1 + A2003)58

Therefore, at t years from 1945, (1 + A1945 + t)
t > 1 + I1945 + t. Thus

land appreciation is always greater than the rate of inflation.

1 + A2003 > 1.041

A2003 > 0.041

APPENDIX B: 
CALCULATION OF EXPONENTIAL FUNCTION OF LAND VALUES

Approximate points:

(0, 100) In 1945, the price of land was 100 billion dollars.

(32, 1000) In 1977, the price of land was 1000 billion dollars.

(35, 2000) In 1980, the price of land was 2000 billion dollars.

(38, 3000) In 1983, the price of land was 3000 billion dollars.

f(0)/f(32) = (ab0)/(ab32)
100/1000 = 1/b32

100b32 = 1000
b32 = 10
b = 1.081

f(0)/f(35) = (ab0)/(ab35)
100/2000 = 1/b35

100b35 = 2000
b35 = 20
b = 1.089

f(0)/f(38) = (ab0)/(ab38)
100/3000 = 1/b38

100b38 = 3000
b38 = 30
b = 1.094

We took the average of the three b-values to get 1.0857 = 1 + A.

APPENDIX C: 
DERIVATION OF GENERAL FORMULA

T = 75.43V + P

P = S2 + S3 + S4 + SM or P = T – 75.43V

T = 75.43V + S2 + S3 + S4 + SM

Since land appreciates uniformly, and non-land assets appreciate
at the rate of inflation, the value of the estate in November 2003 is: 

75.43V(1 + A)58 + (S2 + S3 + S4 + SM)(1 + I2003)

75.43V(1 + A)58 + (T – 75.43V)(1 + I2003)

One-sixth of the estate value today is:

The value of the fourth brother’s share today is S4(1 + I2003), 

which we know is less than . 

To find his compensation, find the difference between these:

– S4(1 + I2003).
75 43 1 75 43 1

6

58
2003. ( ) ( . )( )V A T V I+ + − +

75 43 1 75 43 1
6

58
2003. ( ) ( . )( )V A T V I+ + − +

75 43 1 75 43 1
6

58
2003. ( ) ( . )( )V A T V I+ + − +

75 43 1 1 9 4045
6

2003
58. ( ) ( . )V A P+ + +1

6

75 43 1 1
6

2003
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Problem B Paper: 
Evanston Township High School
Advisor: Peter DeCraene

Team Members: Erica Cherry, Chris LeBailly, Eli Morris-Heft, Jean Rudnicki

OUR PARAMETERS FOR FAIRNESS

1. Left-handed batters should gain no advantage over right-
handed batters. To ensure this, our field is symmetric about a
line through home plate and second base.

2. Given a ball speed (VBALL) and angle of elevation (ϕ), a ball
should be a home run no matter the angle (θ) with respect to
the foul lines at which it is hit. 

3. The field should comply with major league rules and traditions,
one of which is that the distance from home plate to the
centerfield fence should be more than the corresponding
distances down the foul lines. To adhere to this and comply
with parameter 2, the fence is lowered in the middle such that a
ball that would barely clear the right-field (or left-field) fence
would, counting for distance, barely clear the centerfield fence.
The fence is smoothly lowered from right field to center and
then smoothly raised from center to left accordingly. 

4. The current average number of home runs is about two per
game. We aim to keep this figure static.

5. We recognize that, even as we strive to achieve parameter 1,
there is no way to resolve the fact that a left-handed batter gets
a one-step advance towards first base. We believe that the time
it takes to step across home plate is negligible, so this
discrepancy is not corrected.

6. We want the amount of fair territory to be consistent with the
information given in the problem.

PROCEDURE

We constructed a computer simulation that picked a batter of
random handedness, threw a random pitch, hit the ball at a
random velocity and angle, and determined whether it was a
home run. With each simulation of a game, we found the number
of home runs. Through research, we found that the number of hits
per game is about 20, and we worked with the dimensions of our
park until, in accordance with fairness parameter 4, about two
home runs were scored per game. We also ranked in fairness the
parks given in the problem.

Our simulation variables are summarized in Table 1 and Figures
1 and 2.

The parameter bounds were chosen based on our research. 10% of
the general population is left-handed; we were unable to find the
statistic for baseball players. The fastball is the pitch from which
the most home runs are hit and is also the straightest pitch and
the one that flies farthest when hit. The range of θ is derived
naturally from the park’s shape.

PROCEDURE

We researched equations to describe the flight of a hit baseball
based on the speed of the pitch, the speed of the bat, and the
initial angle of elevation, taking air friction into account. Our first 
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equation shows how much kinetic energy is transferred to the
ball:

KEBALL = (KEPITCH + KEBAT) (1)

Only a third of the energy is transferred—the rest goes to
vibration of the bat and to friction. Replacing KE with 

MV2, we have:

MBALLVBALL
2 + (2)

VBALL
2 = (3)

VBALL = (4)

Thus we have an equation for the velocity of a hit ball.

Since we are designing the park for the real world, we have to
consider air friction. Taking to be the velocity vector of the ball 

(note that VBALL is a scalar) and as the drag vector, we have:

= –D (5)

We have a negative on the right side because is contrary to the 

motion of the ball. Breaking into component vectors, we get:

= = (6)

Totaling the sum of the forces acting on the ball:

= –D = and = –mg – D = (7)

= and = –g – (8)

D is a constant dependent on air density (ρ), the ball’s silhouette
surface area (A), and the drag coefficient (C):

D = (9)

We researched ρ for each city in which we were given and for
Evanston, where we located our ideal park. The silhouette surface
area is easily determined because major league regulations state 
that the ball “shall…measure not less than nine nor more than 9

inches in circumference.” Taking the circumference as 9 inches, 

A is ≈ 6.626 in2. We modeled C on a graph in The Physics of 

Baseball. We tried many regression curves and found that the best
fit was the cubic:

C(VBALL) = (–7.773173 x 10–5)VBALL
3 + 0.013016 x VBALL

2 –
0.726969 x VBALL + 0.999441 (10)

In order to derive a function for the position of the ball at time t,
we split the forces acting on the ball into x- and y-components. To 
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Handedness of Batter 90% right; 10 % left

Velocity of Pitch (VPITCH) 90 ± 5 mph

Velocity of Bat (VBAT) 71 ± 2 mph

Initial Angle of Elevation of Hit Ball (ϕ) 35° ± 5°

Angle of Hit Ball with respect to line A (θ) –45° to 45°

Table 1. Simulation variables
Figure 1.

Figure 2.



derive the x-portion of the ball’s position, we started with the
equation:

Fx = max (11)

We also know that:

Fx = –kvx
2 = max = m (12)

because the only force acting on the ball in the x-direction is air
friction. We are using k to represent the drag coefficient (about
0.0007). Using symbol manipulation, we find:

dvx = dt (13) 

Integrating both sides, we get:

dvx = dt (14)

– = t (15)

A little more manipulation gives us:

vx(t) = (16)

This gives us the velocity of the ball in the x-direction at time t.
We also want the position at time t, which we derive by
integrating:

px(t) = = dt = (17)

In the y-direction, equations must take into account both air
friction and gravity. We can start the same way as with the 
x-direction:

Fy = g – kvy
2 = may = m (18)

We can make this into a first-order differential equation by
dividing m from the second and fourth terms in equation (18):

= (19)

Using equation (19), we formed a slope field and used the initial
condition vy = 52.45 sin(35°) to plot a solution to the differential
equation. We took points from this curve and did a polynomial
regression:

vy(t) = –5.471729x4 + 0.032844x3 – 0.432209x2 – 7.650204x +
52.326 (20)

Thus, position function for the y-direction is:

vy(t) = ≈ –1.094346 x 10–4t5 + 0.008211t4 – 0.14407t3 – 

3.825102t2 + 52.326t + 1 (21)

If we combine equations (17) and (21), we can find equations for
the position and velocity of the ball at time t:

= 

(22)

= 

(23)

We used a computer simulation to calculate the position of the
ball. The simulation uses a fourth-order Runge-Kutta method.
Using the changing acceleration and velocity vectors, it calculates
each position of the ball based on the previous. As this method
only works with first-order differential equations, the acceleration
vector presents a problem. We resolved the problem by
substituting in such a way that the acceleration vector’s second-
order equation became a system of first-order equations.

By using equation (8) to find the acceleration in both the x- and 
y-directions, it was possible to use Runge-Kutta to solve the
system. Each time the Runge-Kutta algorithm was called, it
moved the baseball forward one time step. Since there was a
change in velocity in this step, it was necessary to recalculate the
drag coefficient according to equation (10). In this simulation, the
time step was 0.05 seconds. The Runge-Kutta algorithm was
iterated until y-displacement was negative, meaning the ball had
hit the ground. 

When the Runge-Kutta method is called, the position and velocity
vectors are stored in a matrix. We wanted to find the ball’s height
at a given horizontal displacement. To do this, the program
searched the matrix and interpolated between the point with 
x-displacement just greater than what we wanted and the point
with x-displacement just less than what we wanted.

This algorithm was very useful for figuring out if a hit was a
home run. If we knew how far the ball had to travel to reach the
wall, we used the previous algorithm to find the horizontal
displacement. If the vertical distance was greater than the height
of the wall, then the hit was a home run.

The next task was to find the distance from home plate to the
wall. We knew the distance from home plate to left field, left
centerfield, centerfield, right centerfield, and right field. Since we
did not know what function modeled the shape of the wall, we
assumed that it was linear. We broke it up into even sections, each
with a range of 18° (Figure 3).

Determining the value of θ depended on the batter’s handedness.
Right-handers tend to hit the ball towards left center, and left-
handers tend to hit it towards right center. A Gaussian
distribution was created to randomly pick the direction the ball
was hit. For right-handers, the mean was θ = 22.5° (left
centerfield) and for left-handers, the mean was θ = –22.5° (right
centerfield). For both of these distributions, the standard deviation
was set to 5°. A random number generator picked values
according to the normal curve. These values were then altered to
fit the appropriate distribution.

To find the initial speed of a hit ball, we had to know the speed at
which it was pitched and how fast the batter swung. From these,
we used equation (4) to determine the speed of the ball off the bat.
We knew that the average fastball is thrown at about 90 miles per
hour. From the Gaussian distribution (with a mean of 90 and a
standard deviation of 5), we randomly selected the speed of the
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pitch that fit the described distribution. Using the same method
(with a mean of 71 and a standard deviation of 2), we found the
bat speed. To calculate the angle of elevation (ϕ) we used the same
method (with a mean of 35 and a standard deviation of 5). It was
then possible to model the trajectory of the ball.

Given the distance from the fence to home plate, the simulation
calculated the height of the ball and decided whether it was a
home run, which only happens if the height of the ball is greater
than the fence. However, the park specifications only include
distances for left field, left centerfield, centerfield, right
centerfield, and right field. We needed a way to transition
smoothly from one given distance to the next. Though our park
has a curved back wall, we assumed it was linear between points
for simplicity.

In Figure 4, a and b are two of the six
lengths given for each park. Let the third
side of the triangle be c. The angle marked
by the arrow is 22.5° because the fair
territory is 90° and is divided into 5
sections (Figure 3). Let the distance to the
fence be y (Figure 4). Let α be a varying
angle, thus determining y. Note also angle
β opposite side b. By the law of cosines:

c = (24)

By the law of sines:

β = arcsin (25)

By the law of sines:

= (26)

Solving for y gives us:

y = (27)

We were able to use equations (24), (25), and (27) to find
intermediate distances. These three equations were entered into

the simulation to define where the wall was so the computer
could designate whether a hit was a home run. 

We then had to determine the height of the wall so that the
probability of hitting a home run was independent of θ. After
looking at various major league fields, we decided that the
distance to the wall along each foul line should be 350 feet and
that the distance to the centerfield wall should be 400 feet. We
then needed an equation for the distance to the wall as a function
of θ. We decided that the shape of the outfield wall should be an
ellipse and used the polar equation of an ellipse:

r = (28)

We needed to keep a few things constant. We wanted the wall
height to be at least 8.5 feet at all angles to prevent outfielders
from reaching over the wall. We set the ball speed and angle of
elevation so that the ball just cleared the fence at all values of θ. To
do this, we determined that the speed of the ball just after being
hit should be 53.45 m/s and the angle of elevation should be 40°.
After setting these constants, we ran the simulation.

According to our fairness parameters, a hit that just cleared the
wall at one angle should just clear the wall at every other angle.
Therefore, we used the simulation to determine the largest wall
height that still allows a home run to clear the wall. We ran the
simulation at 1° increments of θ between –45° and 45°. We then
used the data and regression to find an equation for the wall
height in meters in terms of θ:

Height(θ) = 10.412518 sin(3.304047θ – 1.570796) + 13.082055 (29)

In order to get the area of fair territory, we took an integral of the
ellipse:

Height(θ)2dθ = 113873.328773 square feet (30)

The results in Tables 2 and 3 show that the park we designed was
the fairest. The difference between the percentages of right- and
left-handed home runs was the smallest. It is also a symmetric
field about the line from home plate to centerfield. In accordance
with our second parameter, the probability of hitting a home run
is indeed independent of θ because of the varying wall height.
Any ball that is a home run at one angle would be a home run at
any other angle. Originally, we wanted our average home runs
per game to be about 2. In our simulation, it was closer to 1.
However, our simulation assumes that all pitches are fastballs, so
our estimate for the number of hits per game is probably low.
Thus, we feel that we have achieved that parameter. Our last
parameter was that our park should have an area of fair territory
that is comparable to other parks. Our park is in the median range
of the parks given in the problem.

The Braves’ park had the second-smallest discrepancy between
the right- and left-handers. However, this park had the third
highest number of home runs per game, so it is an easy park
whether the batter is left-handed or right-handed. 

The Marlins’ park had a higher discrepancy between left- and
right-handers, but at least their number of home runs per game 
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Figure 3.

Figure 4.



was closer to the league average of 2. The
Yankees’ park’s fairness was similar to the
Marlins’. 

The Rockies’ park had the third highest
advantage for left-handers. However, the
percentage of left-handed hits that were home
runs was 95.09% and 96.91%; it should not be
that easy for batters to hit home runs. In
addition, the number of home runs per game
was significantly above the league average of 2.
Therefore, this park was one of the least fair.

The Twins’ park and then the Angels’ had the
largest advantage for left-handers, making both
very unfair. The Angels’ park had more home
runs per game, so it was slightly less fair than
the Twins’, but both were significantly less fair
than Evanston. 

Figure 5 is a diagram of our ideal park.
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% of hits Number of % right-handed % left-handed
Team that are home runs hits that are hits that are

home runs per game home runs home runs
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Evanston 5.41 1.082 5.37 5.75

Table 3. Data for Second Simulation Run

Table 2. Data for First Simulation Run

Figure 5.
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Twins 23.99 4.798 18.82 70.64

Marlins 20.82 4.164 19.05 35.69

Evanston 5.53 1.106 5.51 5.69
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Problem A Paper: Arkansas School for
Mathematics and Sciences
Advisor: Bruce Turkal

Team Members: Katherine Herring, Audrey Morris, 
Alex Wong, Johnson Wong

RESTATEMENT OF THE PROBLEM:

In 1945, the death of Noah Sentz resulted in the division of his
estate among his wife and four children. According to state law,
one-third of his property and assets went to his spouse and two-
thirds went to his children. His estate mostly consisted of 75.43
acres of land. From 1946 to 1949, three of the children sold their
shares back to their mother for $1,300 each. In the process of
distributing the assets, his fourth child was left out under some
unknown circumstances. This week the fourth child filed a
lawsuit against the estate for his original inheritance from the
probate case. The judge has ruled that the son shall receive his
inheritance in the form of monetary payment. Our objective is to
decide how much the fourth child will rightfully receive. 

ASSUMPTIONS AND JUSTIFICATIONS:

• The problem occurs in the continental United States because 
the amount for which the siblings sold their assets is given in
dollars.

• No claims have been filed against the estate.

• The fourth child was ignored in the distribution of the assets,
and the three children who sold their land received two-ninths
of the land, which was worth $1,300 each. If the land had been
distributed appropriately, then each child would have received
one-sixth of the total assets. This would make each lot 12.5717
acres and worth $975.

• The jury does not decide who pays the compensation.

• Assets other than the 75.43 acres are negligible.

• The federal estate tax was paid before the assets were 
distributed.

• Inheritance tax is not taken into account because: 

a. The $1,300 that each of the other three children sold back to
the mother was assumed to be the actual value of two-ninths
of the land. The calculation of current value of the assets was
directly based on this value.

b. It is taken after compensation is awarded. Therefore, the jury
does not need to take it into consideration. 

Solutions 1 and 2:

• Farmland value increase was a representation of the increase in
value of the inherited land since 1946 to 1949.

• The land was unaltered from its state in 1945.

Solution 3:

• The fourth child received one-sixth of the assets, 12.57166667
acres.

• The land would have been sold for $975 between 1946–1949.

• The $975 was held in a bank account accumulating interest.

• The interest on the account compounds yearly.

• The interest rate on the account changes every year, following
the average values for interest.

• Interest for 2003 has already been accrued.

Solution 4:

• The estimated 2003 value was assumed to be correct due to past
trends.

MODEL:

We decided that there are four possible ways to calculate the
amount of compensation for the fourth son. Solution 1 calculates
the current value of the land based on a ratio of the land values in
the 1940s to that in 2003. Solution 2 calculates the present value of
the acreage that the fourth child would have received. Solution 3
awards him the worth of one-sixth of the land in 1949 plus the
interest accrued. Solution 4 gives him the worth of the land in
1949 plus inflation.

Solution 1:

First, the average value of an acre of land for the entire United
States from 1946 to 1949 according to the Economic Research
Service was calculated. Next, the average value of an acre of land
for 2003 according to the Economic Research Service was divided
by the average price per acre to obtain a conversion factor for the
increased value of land. Then the value of the fourth child’s assets
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was multiplied by the conversion factor to acquire a current value
of the son’s land, resulting in an equation:

VTotal = * F

where P(y) is an average value of an acre of land for each year, y is
the year, F is the fourth child’s asset value, and VTotal is the total
current value of the sons’ land.

VTotal = * F

= * 975

= * 975

= 20382.72

Solution 2:

The average value per acre of land in 2003 according to the
Economic Research Service was multiplied by the fourth son’s
share of the land, which was one-sixth of the total assets. The
result is a current value of his land, which could be expressed as
an equation: VTotal = P(y) * L, where VTotal is the total current value
of the son’s land, P(y) is an average value of an acre of land for
the United States in 2003, and L is the fourth son’s share of land 
in acres.

VTotal = P(03) * L

= 1270 * 12.57166667

= 15966.02

Solution 3:

This solution is a calculation of the compensation according to the
1946 to 1949 value of land, which is $975, with the interest that
would have accrued had the son received and sold his property at
the same time as his three siblings. Since the interest was assumed
added yearly, a slightly modified version of the equation below
was used:

F = P(1 + i)n

where F is the amount in the account after interest, P is the
amount in the account at the first of the interest period, i is the
interest rate, and n is the number of periods. The following is the
modified version of the equation: 

Fn = Fn–1(1 + i)

where Fn is the amount after interest and i is the interest rate. F0,
the initial amount in the account, is $975. A program was written
to take the interest rates from 1946 to 2003 to determine the final
amounts in an account that could have started in 1946, in 1947, in
1948, or in 1949. The program then averaged these four values,
returning the value $13,972.10.

Solution 4:

This solution used the 1946 to 1949 consumer price index
conversion factors to estimate his inheritance from the 1940s in
2003 dollars. The conversion values we found used 2003 as the
base for the other conversion factors, meaning the conversion
factor for 2003 is 1.000 and the other factors were based on this
value. The 1946 to 1949 values were averaged to give 0.12175. We
divided what his assets would have been in 1946 to 1949, $975, by
this number to yield $8008.21 as his compensation.

DISCUSSION:

For the first two solutions, the use of farmland values was
inaccurate due to the unknown location and type of the estate’s
land. Although Solution 1 uses a ratio of increase in land values,
making it better for estimation than a straight calculation of
present value as in Solution 2, it is unlikely that all types of land
change at the same rate. Even in the information found for only
farmland, regional changes from 1945 to 2003 varied widely.
Solution 2 assumes that the fourth son would have kept the land
and sold it for present value. Because the other three children sold
their properties back to the mother, it is doubtful that the fourth
son would have kept his share only to sell it after fifty-eight years.
Once again, the land value varies regionally. If the son had been
able to sell his land along with his other siblings, it is very likely
that he would have put the money in a bank, as modeled by
Solution 3. The interest rates used were average short-term yearly
rates, but he may have put the money in an account that either
compounds more or less often. The fourth scenario is improbable;
the fourth child would have at least invested the money, instead
of letting it depreciate.

Through this analysis, it was concluded that Solution 3 is the
fairest compensation. Solution 3 emulates what the son probably
would have done if he had received his inheritance at the proper
time. $13,972.10 should be awarded to the son as his rightful
inheritance.
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November 10, 2003

Dear Judge Robinson:

The jury has made a decision after much deliberation.
This letter is intended to explain the jury’s method for
determining the appropriate amount bestowed upon the
son of the deceased Noah Sentz. The sum that will be
given to Mr. Sentz should be $13,972.10.

We came up with four different methods to determine the
proper compensation. The first method calculates the
value of the land using a designed ratio as a conversion
factor of increase to assess the current value for the
property, based on the prices given for the land in acres.
The second method calculates the present value of the
land that he would have received using current average
value per acre of land in the United States. The third
method awards the beneficiary his rightful share of the
initial value of the land plus interest that would have
been accrued. The fourth method gives the beneficiary his
legal portion of the initial value of the estate taking
inflation into account. Through the analysis of these
processes, we concluded that the third method gives the
beneficiary the fairest compensation. The third method
emulates what the most probable actions the beneficiary
would have taken had he received his inheritance at the
proper time. A program was created to simulate the
accumulation of interest with a changing rate over a 
58-year period. The solution produced by the program
showed the appropriate compensation that should be
granted to the beneficiary.

Respectfully,

The Jury

2004
November

COMAP announces the
Seventh Annual High
School Mathematical 
Contest in Modeling 
November 5–22, 2004

HiMCM is a contest that offers students a unique
opportunity to compete in a team setting using 
mathematics to solve real-world problems. Goals
of the contest are to stimulate and improve 
student's problem-solving and writing skills.

Teams of up to four students work for a 36-hour 
consecutive period on their solutions. Teams can
select from two modeling problems provided by
COMAP. Once the team has solved the problem,
they write about the process that they used. A
team of judges reads all the contest entries, 
winners are selected, and results posted on the
HiMCM Website.

For more information or to register, go to
COMAP's HiMCM Website at: 
www.comap.com/highschool/contests 
or contact COMAP at HiMCM@comap.com



NEW! This CD collection offers mathematical modeling
problems, sample solutions, and other resources suitable for
instructors and students in modeling courses, advisors and
team members in modeling competitions, and those who
want to make mathematics courses more relevant. The
problems are taken from the Mathematical Contest in
Modeling (MCM), the Interdisciplinary Contest in Modeling
(ICM), the High School Contest in Modeling (HiMCM), and
the Consortium column Everybody’s Problems.

The CD is divided into three sections:

MCM/ICM Section

MCM, which began in 1985, and ICM, which began in 1999,
are international contests open to undergraduates and high
school students in which teams of students use mathematical
modeling to solve real-world problems. The teams submit
written papers to panels of judges that select the very best
for recognition as outstanding. This collection gathers all of
the problems, many of the outstanding papers, and the
results from each year’s contest. Also included are
commentaries of judges and practitioners and several
articles about the contest. A special feature is the entire
contents of the 1994 special issue of The UMAP Journal that
celebrated the tenth anniversary of MCM.

HiMCM Section

HiMCM is an international contest open to high school
students. Teams of students use mathematical modeling to
solve real-world problems and summarize their work in
written papers. Panels of judges select the very best papers
to be recognized as national outstanding. Each year, a special
issue of Consortium features the problems and summary
pages of all national outstanding papers, several full papers,
commentaries of judges and the contest director, articles by
students and advisors, and the final results. This collection
gathers all such material that has appeared since the contest
began in 1999 and up to 2003. (Note: There were two
HiMCMs in 2001 because the contest date was changed from
spring to fall in that year.)

Everybody’s Problems Section

Everybody’s Problems is a regular Consortium column that
discusses modeling problems suitable for high school
courses, particularly problems accessible to students at all
levels. The column began in 1995 and is written by several
members of the mathematics department at the North
Carolina School of Science and Mathematics: Daniel Teague,
Floyd Bullard, John Goebel, Helen Compton, and Dot Doyle.  

1-800-772-6627
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w
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TO ORDERProduct # 7614B $99.50 (normal price $199.00)
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L
ast spring it was

SARS.This winter

it’s the flu. In the

spring it’s SARS

again and the avian flu.The

spread of AIDS has been in the

news for the last 15 years.

Every year students read

articles in the news or see

programs on television about

the spread of some infectious

disease. Since many modern

curricula teach students to

model with iterative or

recursive equations, and

modern calculators will

generate sequences of values

for these equations, modeling

the spread of an infectious

disease is an important and

interesting project for students

at both the Precalculus and

Calculus levels.
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Everybody’s Problems

INFECTIOUS DISEASE
SPREAD OF AN
INFECTIOUS DISEASE

DAN TEAGUE & DOT DOYLE

Human history is crowded with the
devastation of epidemics. 

In the 14th century, there were an
estimate 25 million deaths in a
population of 100 million Europeans
attributed to an epidemic of bubonic
plague. In 1520, the Aztecs suffered an
epidemic of smallpox that resulted in
the death of half their population of 3.5
million. When measles first came to the
Fiji Islands in 1875 as a result of a trip to
Australia by the King of Fiji and his son,
it caused the death of 40,000 people in a
population of 150,000. In the three-year
period from 1918 to 1921, there were an
estimated 25 million cases of typhus in
the Soviet Union and about 1 in 10
victims died from the disease. In a
world-wide epidemic of influenza in
1919, more than 20 million persons
perished from the illness and
subsequent attacks of pneumonia.
(Olinick, An Introduction to Mathematical

Models in the Social Sciences, 1978, page 349.)

The number of deaths from SARS last
summer and from the flu in the fall
pales in comparison to these historical
epidemics, but the threat of new
outbreaks is a part of our students’
daily lives. This article will help them
understand the basic mathematical
models describing the spread of
infectious diseases.

The Basic Model

The model for the spread of infectious
diseases is known as a compartment
model, since we think of people
moving from one compartment to
another. We assume we have a fixed
population of N individuals through
which an infectious disease is moving.
Some of the people have the disease
and are called Infectives. Some of the
people do not yet have the disease but
may catch it if they interact with an
Infective. These are called
Susceptibles. Some of the people may
have already had the disease and have
recovered from it. They are called
Recovereds. For some diseases, the
Recovereds develop immunity to the
disease, while for others they return to
the Susceptible group and can again
come down with the disease. This
model is illustrated in Figure 1.

The Loss-Gain Equation

Compartment models can be modeled
nicely by the difference (iterative)
equations with the form New Value =
Old Value + Gain – Loss or Yn+1 = Yn +
Gain – Loss. Most of the iterative
models studied in Precalculus courses
have this form. A couple of typical
Precalculus examples not related to
the spread of disease illustrate this
structure.

FIGURE 1. A COMPARTMENT MODEL
Susceptible Infective Recovered

possible link



First Model 
for the Spread of

Infectious Disease

Our first model will be a simplified
compartment model with only two
compartments, Susceptible (S) and
Infective (I). This model is illustrated in
Figure 2. We have a population of size
N, so S + I = N. This model could
represent an animal population in
which the infected animal does not
leave the herd, or the case of a mild
cold spreading through a college
dormitory.

FIGURE 2. SIMPLE MODEL WITH TWO STATES

We can model the number of
Susceptibles after n intervals of time
with Sn+1 = Sn + Gain – Loss and the
number of Infectives with In+1 = In +
Gain – Loss. In our simple 2-
compartment model, there is no Gain
for the Susceptibles since nothing enters
that compartment and there is no Loss
for the Infectives since nothing leaves
that compartment, so our two
equations are Sn+1 = Sn – Loss and 
In+1 = In + Gain. What our diagram 
also makes obvious is that the Gain
for Infectives is the same as the Loss for
Susceptibles, since the new Infectives are
coming from the Susceptible
compartment. How does a Susceptible
become an Infective?

Modeling the 
Transition Rate

For most infectious diseases,
transmission happens when an
Infective comes in “contact” with a
Susceptible. This contact could be
physical contact as in many STDs, or
contact via a cough or door handle, or
bites from the same mosquito. Not all
Infectives interact with all Susceptibles,

but the larger the sub-population of
Susceptibles, the greater the probability
of an interaction. Likewise, the larger
the sub-population of Infectives, the
greater the probability of an
interaction. Since not all contacts result
in transmission of the disease, we can
describe the rate of transmission as 
α · S · I, where the value of α carries
with it both the probability of
interaction between the two and the
probability of transmission given an
interaction. 

Our Loss-Gain equations then become
Sn+1 = Sn – α · Sn · In and In+1 = In + α ·
Sn · In. If we focus on the number of
Infectives, we can rewrite the equation
in terms of I only as, 

In+1 = In + α · (N – In) · In.

We can use this model to investigate
this simple, two compartment model.
Then we will modify the model to
include Recovereds. 

Investigating the Two
Compartment Model

In the Precalculus class, we need
specific values for N and α to iterate
the equation above. Let’s consider 
N = 1000 and α = 0.001 with n
representing days. We will start with
only one Infective. So In+1 = In + 0.001 ·
(1000 – In) · In with I0 = 1. If we look at
the graph of the iteration (Figure 3),
we see the progression of the disease
through the population of 1000.

Notice that all of the individuals in the
population eventually get sick. The
shape of the curve is a classic example
of logistic growth. This is an important
model for students to be aware of. If
we look carefully at the graph or look
at differences in a table of values
(Table 1), we can see when the
epidemic is growing most rapidly. This
is when the epidemic is most obvious
and causes the most concern (or panic)
in the population.
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Susceptible Infective

EXAMPLE 1: Jo-Ann strained her
knee playing tennis and her doctor
has prescribed ibuprofen to reduce
the inflammation and control pain.
Jo-Ann is instructed to take one 
220-milligram ibuprofen tablet 
every 4 hours for 10 days. As the
drug circulates, it has its anti-
inflammatory effects on Jo-Ann’s
knee, and as its passes through the
kidneys it is filtered out of Jo-Ann’s
system. During any given time
period, the kidneys filter the
impurities (in this case, the kidneys
consider the drug an impurity) from
a fixed amount of blood. If Jo-Ann’s
kidneys filter 65% of the drug in her
body every 4 hours, how much of
the drug will be in Jo-Ann’s system
after 96 hours?

In this example, we have 

New Value = Old Value + Gain – Loss

Yn+1 = Yn + 220 – 0.65Yn

We also need an initial condition, 
Y0 = 220. The difference equation
above can be simplified to 
Yn+1 = 0.45Yn + 220.

EXAMPLE 2: Suppose you are
interested in purchasing a car and
need a $5000 loan. The lending
agency is going to charge you
interest each month and you are
going to make a payment each
month. You plan to pay $100 each
month until the loan is paid off.
Suppose the interest rate is 0.75%
per month. How long will it take
you to repay the loan?

The second example has the Loss-
Gain equation 

New Value = Old Value + Gain – Loss

Yn+1 = Yn + 0.0075Yn – 100

with the initial condition, Y0 = 5000.
The difference equation above can
be simplified to Yn+1 = 1.0075Yn – 100.



The greatest growth in this example
occurs when approximately half of the
population has the disease. Is this
chance or does it happen all the time? If
we change the growth rate to 
α = 0.005 and α = 0.0075, we can see
what happens (Figure 4).

We see that in all three cases, the
maximum growth (largest difference

between successive values) happens
around I = 500. Why?

Our Loss-Gain equation gives the
answer. If, In+1 = In + 0.001 · (1000 – In) ·
In, then in each time interval we add a
value proportional to S · I = (N – I) · I.
The function f(I) = (N – I) · I has its
largest value at I = . N

2
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FIGURE 4. COMPARING TRANSMISSION RATES α = 0.001, α = 0.005, AND α = 0.0075

n days 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

In 1 2 4 8 16 31 62 120 226 401 641 871 983 1000 1000

∆In ~ 1 2 4 8 15 31 58 106 175 240 230 112 17 0

TABLE 1. NUMBER OF INFECTIVES (IN ROUNDED TO INTEGER) 
AND CHANGE IN INFECTIVES (∆IN)

A More Realistic Model
with Recovery

A more realistic model, known as the
SIR model, included Recovereds. The
compartment model has three
compartments with transitions
between adjacent compartments
(Figure 5).

FIGURE 5. THREE COMPARTMENT

(SIR) MODEL

Our Loss-Gain Equations can be
developed as before. There is no Gain
for Susceptibles, no Loss for Recovereds,
and the Gain for Infectives is the Loss
for Susceptibles while the Loss for
Infectives is the Gain for Recovereds. The
only real change is to add a rate of
recovery, β. During each time interval,
a proportion of those infected will
recover. They can no longer spread the
disease and are immune to catching it
again. For many diseases, if the
infected have the disease for k days,
the recovery rate is estimated as β = .
Unfortunately, for some diseases,
“recovery” may mean death due to the
disease. Our Loss-Gain equations
become:

Sn+1 = Sn + Gain – Loss 
In+1 = In + Gain – Loss 
Rn+1 = Rn + Gain – Loss

so

Sn+1 = Sn – Loss 
In+1 = In + Gain – Loss 
Rn+1 = Rn + Gain

and

Sn+1 = Sn – α · Sn · In
In+1 = In + α · Sn · In– β · In
Rn+1 = Rn + β · In

If α = 0.001 and β = 0.2 (it takes 5 days
to recover), what is the progression of
the disease? (See Figure 6.)

There is almost nothing we can do to
reduce the value of β, so to affect the

1
k

Susceptible Infective Recovered
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FIGURE 8. α = 0.00025

spread of the disease, we have to reduce
the value of α. Suppose we cut the value
of α in half (α = 0.0005) by wearing
masks to reduce the spread of air-borne
particles. How does this affect the
number of people who ultimately get the
disease? (See Figure 7.)

Notice that the disease took much longer
to move through the population and not
everyone seems to get the disease. After
50 days there are still around 100 people
who did not get the disease. If we reduce
the transmission rate further 
(α = 0.00025) by isolating those infected,
will even fewer catch the disease? (See
Figure 8.)

Now, we see that fewer than half of the
population get the disease, even after 5
months. Is there some critical value for α
that will either create an epidemic in
which everyone gets sick or have only a
portion of the population become ill?

Analyzing the Equations

If we look at the defining Loss-Gain
equations, we may be able to see beyond
the graphs. 

Sn+1 = Sn – α · Sn · In

In+1 = In + α · Sn · In – β · In

Rn+1 = Rn + β · In

The number Infectives will increase if 
α · Sn · In – β · In is greater than zero and
will decrease if α · Sn · In – β · In is less
than zero. This term seems to be the
determining factor. If α · Sn · In – β · In >
0, then (α · Sn – β)In > 0. Since Sn and In
are both always non-negative, 
(α · Sn – β)In > 0 means that (α · Sn – β) > 0, 

or Sn > . This is the key to an epidemic!

Look back at the graphs. The number of
Infectives begins to decrease whenever the
number of available Susceptibles drops 
below . In Figure 6, = 200, so the 

disease doesn’t begin to slow down until
after 80% of the population has the
disease. In Figure 7, = 400, so theβ

α

β
α

β
α

β
α



disease begins to slow down when
60% remain unaffected, while in Figure
8, = 800, and the disease begins to 

decline after only 20% are affected and
80% remain well. 

A Calculus Model

The differential equations modeling
this system are similar to the difference
equations used before. The iterative
equations

Sn+1 = Sn – α · Sn · In
In+1 = In + α · Sn · In – βIn
Rn+1 = Rn + βIn

become the differential equations 

= –α · S · I

= αS · I – βI with S(t) + I(t) + R(t) = N

= β · I

Calculus students should use Euler’s
method (with ∆t = 1) to investigate the
effects of altering the values of α and β
on the spread of the disease. Their
investigation should lead them to some
conjectures about the progress of the
disease that can be confirmed or
rejected after solving the differential
equations.

As before, the equation modeling the
change in Infectives is the key to
understanding the situation. From the 
differential equation = αSI – βI, we 

know that = I(αS – β) > 0 and the 

number of Infectives is increasing 
whenever S > . As before, this is the

important fact of the growth of the
epidemic. The key to changing the
dynamics of the disease, either by
changing S0,α or β was to get S < . If
you look back at the graphs and
numerical values, you will see that 
S = is a critical value. 

The advantage of the differential
equations model over the iterative
model (either the Precalculus version
or Euler’s method) is in finding closed
form models by solving the equations.
To find the function determining the
number of Infectives, we can eliminate t
from the equations by solving for .
We know that

.

Solving for I(S), we have 

dI = –1 + dS, which simplifies to

I(S) = –S + ln(S) + C.

If t = 0, we have S0 and I0 Susceptibles
and Infectives, respectively, and we
know that 

I(S) = S0 + I0 – S + .

What does this function look like? We 
already know that I’(S) = –1 + . 

Since I”(S) = – is always negative, 

we know that the function I(S) is
always concave down and has its 
maximum value at S = . If I’ > 0 the 

number of Infectives increases and if 
I’ < 0, the number of Infectives is
decreasing.

The graph of (S)I = S0 + I0 – S + 

can be deceiving since S is 

always decreasing. 

So, when S < , the epidemic will 

begin to wind down. As long as S > ,

the epidemic will continue to build. 
The value is the ratio of the rate at 

which Infectives become recovered and
Susceptibles become infected. Notice 
that if S = , then both and are 

equal to zero. So, again, we see that the
ratio of β to α is important in the 

spread of the disease. The best way to
restrict the spread of the epidemic is to
affect this ratio. 

If there is a large enough population of 
Susceptibles, S > , then the number of 

infected individuals will increase.
There must be a sufficient number of
Susceptibles available for the epidemic
to develop. This is why separating the
infected from Susceptibles by
quarantine is important in halting the
disease. Notice that the initial number
of Infectives does not seem to matter,
since it does not appear in the
derivative. The epidemic will end,
naturally (that is, without
intervention), when the number of
available Susceptibles is too small. This
does not mean that everyone will
eventually get the disease. Once S = ,
the epidemic will begin to wind
down. By isolating Infectives, we are
effectively reducing the number of
available Susceptibles.

Maximum Proportion Ill
at One Time

What proportion of the population will
have the disease when it is at its peak?
This proportion affects the public’s
perception of the seriousness of the
outbreak. We can use our equation I(S)
and evaluate it at S = . So, 

I = S0 +I0 – + ln . 

In our example above, we had 

= = 200, S0 = 999, and I0 = 1, so 

the maximum number infected will be 

I(200) = 1000 – 200 + 200ln ≈ 478

or almost half of the population sick at
one time. If, however, we have a 
situation in which = 500 (by 

wearing masks, for example), then we
would have 

I(500) = 1000 – 500 + 500ln ≈ 154
500
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or 15% of the population. This is still a
lot, but the size of the epidemic is
dramatically reduced and the sense of
panic that may occur when many
people are ill at once is markedly
reduced. 

Total Number Falling Ill 

The total number infected can be found
using our function I(S) = S0 + I0 – S + 

ln . The epidemic is over when 

I = 0. So, for each situation, we can use
numerical methods to solve 

S0 + I0 – S + ln = 0. 

In our initial example, = 200, then 

1000 – S + 200ln = 0 at S ≈ 7, so 

essentially everyone will eventually
contract the disease.

If we increase to 400 by washing 

hands and other practices of good
hygiene we have 

1000 – S + 400 · ln = 0 

at around S = 107. This means 107
individuals do not become infected.
And if we can raise to 800 (Figure 8)
we have 
1000 – S + 800 · ln = 0 

at around S = 626. Fewer than half of
the Susceptible population become ill. 

We conclude this edition of Everybody’s
Problems with a handout for
Precalculus students suggesting
activities that will lead them to an
understanding of the material
developed in this article. A follow-up
handout for Calculus students assumes
they have answered the questions
posed to the Precalculus group using
Euler’s Method. ❏

Everybody’s Problems concerns teaching
high school mathematics courses with 

real-world problems, particularly problems 
that are suitable for students at all levels.
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By considering the mechanism of
transfer, together we have
developed a system of Loss-Gain
iterative equations

Sn+1 = Sn – α · Sn · In

In+1 = In + α · Sn · In – βIn

Rn+1 = Rn + βIn

that model the spread of an
infectious disease. For our
investigation, use N = 1000, 
S0 = 9999, I0 = 1, R0 = 0, α = 0.001
and β = 0.2. We will alter these
values to see what effect they have
on the spread of the disease. 

Computer 
(or Calculator)
Investigation

1. Iterate the defining equations
above to get baseline information
about the behavior of the three
groups. How does the progress 
of the disease change if N = 800, 
N = 300, or N = 100. For each of
these populations, estimate the
total number that eventually
come down with the infectious
disease and the maximum
proportion of the population ill
with the disease at one time. 

2. With N = 1000, suppose the
disease is more difficult to catch
than our model suggests. Use 
α = 0.0005. How does this affect
the total number that come down
with the disease and the
proportion ill with the disease at
one time? Suppose the disease is
easy to catch, with α = 0.005, how
does this alter the progress of the
disease? How low must α be
before fewer than half of the
population actually gets ill?
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3. Using N = 1000 and α = 0.001
again, suppose a treatment is
found that cuts the recovery time
in half. How does this affect the
total number that come down with
the disease and the maximum
proportion ill at one time?

4. For the most part, we can’t really
affect the value of β very much.
Recovery time is often little
affected by our ministrations. The
transfer rate can be affected in a
number of ways. Many people in
areas where an infectious disease
is widespread try to reduce the

spread of the disease by wearing
masks. The Canadian Broadcast
Corporation (CBC) did a report on
the ability of masks to reduce the
number of microscopic particles
breathed in. They found that the
standard dust mask reduced the
number of airborne particles by 13
percent, a dentist’s mask by 32
percent, a surgical mask by 62
percent, and an N-95 mask (like
those used by the Army in Iraq) by
98 percent. Could wearing masks
significantly alter the spread of the
disease or must a vaccine be
found?

Additional Questions for Calculus

In our computer or calculator investigation using Euler’s Method (iterations),
we have developed a number of conjectures about what would happened to
the progress of the disease under different conditions by changing the values
of N, α and β. We want to verify those results and learn some crucial facts
about epidemics by using Calculus.

1. When is I(t) increasing and when is it decreasing? What does this mean
about the spread of the disease? Using this result, explain why isolation
and quarantine will be effective against SARS.

2. We have equations for and . Use them to find . Solve this 

differential equation for I(S). Find I’(S) and I”(S) and use these derivatives
to determine when the number of infected will begin to decrease. Does this
match your solution from question 1? Explain any differences you see. 

3. Use the function I(S) to determine the maximum number of individuals ill
at one time. What proportion of the population will be sick
simultaneously? Are these results consistent with your graphs in the
computer investigation?

4. How many Infectives will there be when the epidemic is over? Use this idea 
to determine the proportion of the population infected under the different
situations considered in the computer investigation. How effective do the
masks need to be to seriously affect the progress of the disease? Is it
realistic to think isolation and wearing masks can work or must a vaccine
be found?

dI
dS

dS
dt

dI
dt

Project Handout for Precalculus Students
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